Do methane seeps support distinct macrofaunal assemblages? Observations on community structure and nutrition from the northern California slope and shelf

Lisa A. Levin^{1,*}, David W. James¹, Christopher M. Martin¹, Anthony E. Rathburn¹, Leslie H. Harris², Robert H. Michener³

¹Marine Life Research Group, Scripps Institution of Oceanography, La Jolla, California 92093-0218, USA ²Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA ³Boston University Stable Isotope Laboratory, Department of Biology, 5 Cummington St., Boston, Massachusetts 02215, USA

ABSTRACT: Although the conspicuous epifauna of reducing environments are known to exhibit strong morphological, physiological, and nutritional adaptations for life in these habitats, it is less clear whether infaunal organisms do so as well. We examined metazoan macrofauna from methane-seep sediments on the northern California slope (500 to 525 m depth) and from seep and non-seep sediments at 3 locations on the shelf (31 to 53 m depth) to determine whether the community structure and nutritional sources of seep infauna were distinct from those in non-seep, margin sediments. Seep macrofauna consisted mainly of normal slope and shelf species found in productive settings. Several macrofaunal taxa, such as Capitella sp., Diastylopsis dawsoni, and Synidotea angulata, exhibited a preference for seeps. Other taxa, such as the amphipods Rhepoxynius abronius and R. daboius, avoided seeps. Species richness of shelf macrofauna, evaluated by rarefaction and diversity indices (H' and J'), generally did not differ in seep and non-seep sediments. Similarly, stable isotopic composition (δ^{13} C, δ^{15} N) of active seep and non-seep macrofauna did not differ at the 3 shelf sites. Stable isotopic analyses of calcareous material confirmed the presence of methane-influenced pore waters at the slope study site. At one slope clam bed, macrofaunal δ^{13} C signatures were lower and δ^{15} N values were higher than at another clam bed, inactive slope sediments and shelf sites. However, only 1 of 14 macrofaunal taxa (a dorvilleid polychaete) exhibited isotopic evidence of chemosynthetic nutritional sources. At these sites, seep influence on the ecology of continental margin infauna appears spatially limited and relatively subtle. At their current level of activity, the northern California slope and shelf seeps appear to function as ephemeral, smallscale disturbances that are not sufficiently persistent to allow chemosynthesis-based trophic specialization by most infauna. Rather, we suggest that many of the infauna inhabiting these seep sediments are shelf and slope species preadapted to organic-rich, reducing environments.

KEY WORDS: Macrofauna · Macrobenthos · Methane cold seep · Sulfide · Stable isotope · δ^{13} C · δ^{15} N · Chemoautotrophy · Diversity · Eel River margin

- Resale or republication not permitted without written consent of the publisher

INTRODUCTION

Seafloor sediments provide varied environments for sediment-dwelling macrofauna (infauna). Because the

physical and chemical properties of the sediments can strongly influence resident animals (McCall & Tevesz 1982), processes that change these properties can potentially exert strong influence on infaunal communities. One such process is the venting of methane, and consequent microbially mediated oxidation, which is

^{*}E-mail: llevin@ucsd.edu

coupled with sulfate reduction in anaerobic environments (Beauchamp et al. 1989, Masuzawa et al. 1992). Since discovery of the first methane seeps (Paull et al. 1984), seep-like environments have been found in varied settings, including subduction zones, transform faults, mass wasting sites (Hovland & Judd 1988, Sibuet & Olu 1998), pockmarks (Dando et al. 1991, 1994), and around dead marine mammals (Smith et al. 1998). These sites are characterized by the presence of reduced sulfides and methane, limited oxygen within sediments, high microbial biomass (Guezennec & Fiala 1996), and often a characteristic epibiota that includes symbiont-bearing clams, vestimentiferan tube worms and sometimes mussels or gastropods (Hovland & Judd 1988, Sibuet & Olu 1998). During the past decade, a large number of sites venting cold, methane-rich fluids have been discovered along the eastern and western Pacific margins. Sites of fluid flow in near-surface Pacific sediments include the Nankai Trough and Japan Trench (Boulegue et al. 1987a,b, Dron et al. 1987, Sibuet et al. 1988, Gamo et al. 1992), Gulf of Alaska (Suess et al. 1998), Oregon subduction zone (Han & Suess 1986, Kulm et al. 1986, Suess & Whiticar 1989), northern California slope (Brewer et al. 1997, Yun et al. 1999), Monterey Bay (Barry et al. 1996, 1997), accretionary prisms off Costa Rica (Zuleger et al. 1995, 1996) and Barbados (Olu et al. 1996b, 1997), and the Peruvian margin (Olu et al. 1996a).

Most reports of seep fauna have focused on the larger, surface-dwelling organisms (megafauna) (reviewed in Sibuet & Olu 1998) but there are several reports of smaller infauna (Table 1); only a few of these examined infaunal community structure. Megafauna and macrofauna of methane seeps and pockmarks have been studied most thoroughly in shallow waters of the Santa Barbara margin (Davis & Spiess 1980, Montagna et al. 1989), the North Sea (Dando et al. 1991, 1994, Jones 1993, 1996) and the Skagerrak (Dando et al. 1994). General patterns emerging from these studies suggest that densities of macrofauna living in seep environments may be elevated or reduced relative to non-seep conditions. In all instances where this was examined, dominance was high and species diversity was relatively low, relative to surrounding sediments. Several megafaunal or meiofaunal taxa at seeps belong to genera or families known to bear symbionts. Examples include pogonophorans, thyasirid, lucinid and vesicomyid clams, and various gutless nematodes (Table 1).

Analyses of the natural, stable isotopic compositions of tissues (δ^{13} C, δ^{15} N, δ^{34} S) have been used as a means to determine food sources in organisms inhabiting reducing environments (e.g., Paull et al. 1985, Brooks et al. 1987, Cary et al. 1989, Kennicutt et al. 1989, Schmaljohann et al. 1990, Conway et al. 1994). The

stable isotopic compositions ($\delta^{13}C$ and $\delta^{18}O$) of carbonate skeletal material from deep-sea organisms can also be indicative of ambient temperature and chemistry conditions (Van Dover & Fry 1989, Sen Gupta & Aharon 1994). Large depletions of δ^{13} C (-30 to -70‰) in the tissues of organisms, such as vestimentiferans, bivalves and gastropods, have been proposed to indicate methanotrophy or sulfide oxidation by symbionts in seep and vent taxa (Paull et al. 1985, Brooks et al. 1987, Van Dover & Fry 1989). However, comparable isotopic signatures may be acquired from consumption of free-living chemosynthetic bacteria (e.g., Beggiatoa or Thioploca), or by predation on animals with endosymbionts. Plankton detrital matter and terrestrially derived organic matter are other possible food sources for continental margin seep faunas.

This paper examines the metazoan macrofauna within shelf and slope seep sediments on the Eel River margin of northern California, USA, and for the shelf assemblages, draws comparisons with non-seep faunas. The following questions are addressed: (1) Do sites of methane seepage support macrofaunal assemblages distinct from those in non-seep sediments with respect to composition and diversity? and (2) Do methane seep macrofauna derive nutrition from different sources than non-seep macrofauna? Specifically, do seep infauna utilize chemosynthetically fixed organic matter? This latter question was addressed using δ^{13} C and δ^{15} N analyses.

METHODS

Macrofauna were sampled from northern California methane seeps located on the continental slope at 500 to 525 m depth during October 1997 and on the shelf at 31 to 53 m depth during October 1998 (Fig. 1). This margin is a dynamic environment subject to extensive, rapid deposition of flood-derived terrestrial sediment, episodic seismic activity characteristic of convergent margins, intense, winter-storm-induced sediment resuspension, and migration of subsurface gases and pore fluids that alter surface morphology and redistribute sediments (Alexander & Simoneau 1999, Yun et al. 1999). Seep samples from the slope site were collected in 5 distinct Calyptogena pacifica clam beds $(40^{\circ}47.08' \text{ N}, 124^{\circ}35.68' \text{ W})$ and nearby inactive areas (40° 47.12' N, 124° 35.61' W) with tube cores (8.3 cm inner diameter, 10 to 15 cm deep) using the ROV 'Scorpio' and Sea Cliff submersible. Macrofauna were examined from 6 clam bed cores, and from 2 cores in sediments away from clam beds (Table 2). Seep and non-seep sediments were sampled at 3 shelf sites: 1 north of the Eureka Harbor (Site A, 50 to 53 m deep, 40° 49.87' N, 124° 15.95' W) and 2 south of the Harbor

Location	Depth (m)	Seep type	Major epifaunal feature	Faunal observations	Source
Santa Barbara, USA	16	Hydrocarbon	<i>Beggiatoa</i> mats	72% of species and 90% of individuals shared with non-seep sites 60% of spp. had higher densities at seeps, especially tubificid oligochaetes Dominance and diversity similar to outside seeps More deposit feeders, fewer carnivores at seeps Nematodes dominate seep meiofauna (85%)	Davis & Spies (1980) Montagna et al. (1989)
Flower Garden, Gulf of Mexico, USA	70	Brine, sulfides	<i>Beggiatoa</i> mats	Meiofauna dominated by gnathostomulida, platyhelminthes, aschelmenthes, and amphipods Fauna distinct from non-seep sites, but densities similar Nematodes show higher dominance, body elongation	Powell & Bright (1981) Powell et al. (1983) Jensen (1986)
Gulf of Mexico, USA	350-2200	Hydrocarbon/ methane Ammonia	Microbial mats, tube worms, clams, mussels	Lucinid, thyasirid clams associated with lithified sediments to 65 cm deep. PAH present in tissues δ^{13} C varies—multiple C sources	MacDonald et al. (1990) Wade et al. (1989) Brooks et al. (1987)
Barbados Prism	1000-2000	Methane seeps		Maldanidae, Echiura, Sipuncula Polyplacophora	Olu et al. (1996b)
Barbados Prism	6800	Methane seeps		Maldanidae, Chaetopteridae, Ampharetidae, meiofauna up to 11000 ind. 10 cm ⁻²	Olu et al. (1997)
Guaymas Basin, Gulf of California, Mexico	2020	Hydrocarbon/ hydrothermal venting (hot)	Beggiatoa mats, Calyptogena pacifica	High densities, low spp. richness Patchy faunal distributions Dorvilleid polychaetes dominate Also, ampharetid <i>Amphisamytha</i> , trochid gastropods, <i>Exallopus</i> , <i>Nuculana</i>	Grassle et al. (1985)
Florida Escarpment, USA	3300	Brine, methane, sulfides	<i>Beggiatoa</i> , tube worms, mussels, gastropods	3 cores taken—some species also present in Pacific vents (Amphisamytha, Nicomache, Hesiospira)	Petrecca & Grassle (1987) Cary et al. (1989) Paul et al. (1984)
Hatsuchima Seep, Japan	1170 1160	Methane seep	Calyptogena soyae	Meiofauna abundance at seep similar to control Nematodes less diverse at seep Maldanids <i>Nicomache</i> present <i>N. ohta</i> has <i>Beggiatoa-</i> like filaments	Shirayama & Ohta (1990) Miura & Hashimoto (1991)
Nankai Trough, Japan Trench, Kashima	3830 5900 5640	Methane seep	3 spp. Calyptogena C. phaseoliformis C. phaseoliformis	Serpulids associated with clams Tubiculous polychaetes in mudstone, caprellids Caprellid amphipods and tubiculous	Juniper & Sibuet (1987)
Seamount, Japan Laurentian Fan	3850	Methane,	Calyptogena	polychaetes near clams <i>Thyasira, Solemya</i> , pogonophorans,	Petrecca & Grassle
North Sea	115	sulfides Methane seep Pockmarks	Beggiatoa	Spirobranchia, galatheid crabs Taxa with chemosynthetic symbionts including <i>Thyasira</i> , <i>Astomonema</i> , <i>Siboglinium</i> Polychaetes rare, but many non-seep taxa present Macrofaunal dominance high, diversity low	(1987) Dando et al. (1991)
Kattegat, Denmark	10	Bubbling reefs (carbonate) Sandy seeps	Cancer pagurus Homarus vulgaris Metridium senile	Nematodes dominated meiofauna Reduced densities of nematodes, oligochaetes and polychaetes relative to nearby control sites Infauna concentrated in upper 2 cm Symbiont bearing nematodes to 22 cm <i>Leptonemella aphanothecae</i>	Jensen et al. (1992)
Skaggerak, Denmark	300	Methane seep		Pogonophorans form 63% of infauna. Also, Paramphinome, Abra, Nucula, Amphiura	Dando et al. (1994)
Monterey Bay, USA	906	Cold seep	Beggiatoa, Thioploca sp. mats Calyptogena sp.	Nematodes dominant Nematode and ciliate biovolume and density higher at seep than control sites	Buck & Barry (1998)
				Largest body diameter at seeps	

Table 1. Summary of infaunal studies (megafauna, macrofauna and meiofauna) in seep environments. PAH: polyaromatic hydrocarbon

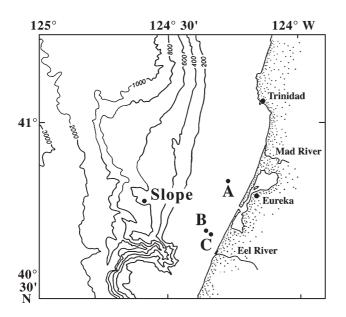


Fig. 1. Location of sampling stations on the northern California shelf and slope, USA

(Site B, 40 to 43 m deep, $40^{\circ}42.22'$ N, $124^{\circ}22.35'$ W; Site C, 31 to 37 m deep, $40^{\circ}41.83'$ N, $124^{\circ}21.37'$ W). Shelf sediments were sampled by the Delta submersible's slurp device and by shipek grabs deployed from the surface on the RV 'McGaw' (Table 2). The slurp and shipek samples collected the upper 6 to 8 cm of sediment, but were considered non-quantitative for analytical purposes.

On board ship, shipek samples were designated as seep samples if sediments were black and smelled sulfidic. They were considered non-seep samples if they were brown or tan and did not smell of sulfide. Five of the shipek samples appeared to be transitional between seep and non-seep sediments (gray sediments, slight sulfide smell). These were discarded from the analysis. Slurp samples were designated as seep samples if the scientist in the submersible viewed black surface sediments and methane bubbles emerging from the collection site. The occurrence of methane seeps is well documented for the study sites (Brewer et al. 1997, Yun et al. 1999). They are oriented along deep-rooted structures in the accretionary wedge (e.g., faulted anticlines) (K. Brown pers. comm.). Although modern wood debris is ubiquitous in near-surface sediments on the Eel River margin, it is refractory. Degradation of ancient terrestrial detritus is the likely methane source on the shelf, while methane hydrates are the probable source of the observed sulfidic sediments and bubbles on the slope (Brewer et al. 1997).

On board ship, macrofauna samples were sieved on a 0.3 mm mesh and the material retained was preserved in 8% buffered formaldehyde and seawater. In the laboratory, macrofauna were sorted from sediments, counted, and identified to the lowest taxon possible. Macrofaunal diversity was examined using rarefaction analyses (Hurlbert 1971), the information index (H') \log_2), and evenness (J') with the software Biodiversity Pro (McAleece et al. 1997). Species count data were pooled within each station and treatment for the rarefaction analyses. Differences among sites and between seep versus non-seep sediments were examined for species composition and isotopic signatures with 1-way ANOVA or with *t*-tests using JMP[®] software. Proportions were arcsine-transformed prior to analysis. Multivariate analyses of community composition were performed by multidimensional scaling (MDS) and analysis of similarities (ANOSIM) (on uniform numbers of replicates) using Primer software (Clarke & Warwick 1994). Multivariate analyses were conducted on species proportions because the shipek and slurp samples did not allow accurate density estimates.

At both shelf and slope sites, some macrofauna were sorted live on board ship, counted, identified and frozen in liquid nitrogen for subsequent analyses of δ^{13} C and δ^{15} N (Table 2). Isotopic analyses were conducted using a Finnigan Conflo II continuous flow system and a Fisons NA1500 elemental analyzer. Prior to combustion, all samples were acidified with 1% PtCl₂ to remove carbonates.

Surface sediments from the slope and each shelf site (0 to 2 cm deep) were frozen on board ship for later

Table 2. Number of samples examined for macrofauna on the northern California shelf and slope and number of individuals assayed for $\delta^{13}C$ and $\delta^{15}N$

		Slurp	Shi	ipek grab	Tub	e cores	1	ic analyses . of ind.)
	Seep	Non-seep	Seep	Non-seep	Seep	Inactive	Seep	Non-seep
Site A (50 m deep)	5	2	3	3	0	0	20	11
Site B (40 m deep)	4	4	6	6	0	0	2	2
Site C (35 m deep)	0	2	6	33	0	0	19	15
Slope (500 m deep)	0	0	0	0	6	2	19	7

analyses of sand, carbonate, and organic carbon and nitrogen content. Percent sand (>63 µm) and silt and clay (<63 µm) were determined by wet sieving homogenized sediments through a 63 µm screen, drying the sediments at 80°C for 48 h, and weighing the fractions. Organic C and N contents were analyzed on freeze dried sediments using a Perkin-Elmer CHN analyzer after removing inorganic carbonate through dissolution in 10% HCl. Bottom water was collected in a Niskin bottle by the ROV Scorpio or Delta submersible from within 2 m of the sediment surface for oxygen analysis. Samples were preserved in volumetric flasks with MnCl₂ and NaOH/NaI at sea and returned to the Scripps Institution of Oceanography for analysis of oxygen concentration on a modified Technicon AA-II continuous flow analyzer.

RESULTS

Site descriptions

Active venting of methane bubbles, visible at the sea surface and on the seabed, was observed in the 3 shelf areas sampled. Methane seepage was widespread but patchy, with discoloration of sediments (indicating sulfidic patches) on scales of decimeters to a meter. Storms during the cruise produced bottom disturbances and bedload transport over the entire study area, preventing sampling by the Delta submersible on some days. No microbial mats or typical seep epifauna were evident. Sediments often were rippled and swell troughs were present. No carbonate concretions were visible on the surface. Epifaunal flatfish, decapods, and cnidarians were abundant at Site A. Mysids, isopods and small flatfish were visible at Sites B and C.

On the slope, dense aggregations of the clam Calyptogena pacifica were observed in beds ca 15 to 100 cm^2 , often with a mix of living and dead shells. The distribution of clam beds suggested that seepage occurred in patches over at least 1 km² of seafloor. Sea pens, the sea star Rathbunaster californicus, and the cnidarian Anthomastus ritteri were common throughout the area, though the cnidarians were absent in clam beds. Although sediments contained fine mud and did not appear to be current swept, tidal forcing generated strong, periodic bottom currents. Bouldersized outcrops of authigenic carbonate were observed, with smaller carbonate nodules present within sediments. Rapid venting of methane bubbles was observed in a 2 m diameter depression at ca 520 m. Venting of seep fluids is indicated by pore-water profiles in 10 to 23 cm deep cores from 3 slope clam beds (clam beds 2, 3 and 4). These profiles revealed upward advection of slightly more saline, and Ca- and Mgdepleted fluids (J. Gieskes unpubl. data). However, compositional changes were relatively small, indicating that upward moving fluids mixed substantially with seawater prior to reaching the sediment-water interface.

Bottom-water and sediment properties

Bottom-water oxygen concentrations were higher on the shelf (2.74 to 2.95 ml l⁻¹) than at the slope site (0.76 \pm 0.02 ml l⁻¹), which was at the upper boundary of the oxygen minimum zone (Table 3). Sediments at all sites were relatively coarse grained, but were markedly sandier at the 2 shallowest sites (B and C; 84 to 95 % sand), than at Site A (63 % sand) or the slope site (69 % sand) (Table 3). Correspondingly, sediment organic C content was low (<1 %) at all sites, but was slightly higher in the finer-grained areas (Table 3). No marked differences in sand content or organic matter content were evident between seep and non-seep sediments within a site.

Macrofaunal composition

Shelf settings

A total of 1269, 892, and 925 infaunal animals (excluding mysids) were examined from shelf Sites A, B, and C, respectively. Most of the macrofaunal species collected from the shelf seeps also were present in nearby non-seep sediments (Table 4). The assemblage collected at both seep and non-seep sites was typical for sandy shelf environments. Dominant taxa included the isopod *Tecticeps convexus*, the amphipod *Rhepoxy-nius daboius*, the cumacean *Diastylopsis dawsoni*, the gastropod *Astyris gausapata*, and the polychaetes *Nephtys californiensis*, *N. cornuta*, *Lumbrineris* sp., *Amaeana occidentalis*, *Scoletoma tetraura*, *Magelona sacculata*, and *Mediomastus* spp. (Table 4).

Of the 201 taxa observed on the shelf, 55 were found exclusively in seep patches and 59 were found exclusively in non-seep sites (Table 4). Seven taxa were found exclusively in seep sediments at 2 of the 3 shelf sites: *Atylus tridens, Cheirimedeia zotea*, Lampropidae, *Photis brevipes, Spiochaetopterus costarum, Synidotea angulata*, and *Tubulanus polymorphus*. Many of these were single collections from a site, however, and probably do not reflect real habitat preferences. *Cheirimedeia zotea* ($t_{74} = 1.97$, p = 0.053) and *Synidotea angulata* ($t_{74} = 2.44$, p = 0.017), however, exhibited significant seep preference. *Capitella* sp. was the only taxon found exclusively in seep sediments at each of the 3 shelf sites, and was absent in

		Bottom-water dissolved oxygen (ml l ⁻¹)	Gr. Sand	ain size (%) Silt and clay	CaCO ₃ (%)	Org C (%)	Org N (%)	C:N
Site A (50 m deep)		2.95						
Seep	Mean SE n		62.5	37.5	10.6	0.76	0.05	15.2
Non-seep	Mean SE n		-	_	-	-	-	-
Site B (40 m deep)		-						
Seep	Mean SE n		83.7	16.3	8.4 (2.3) 2	0.37 (0.02) 2	0.02 (0.02) 2	16.4
Non-seep	Mean SE n		93.2	6.8	8.0 (1.4) 3	0.31 (0.02) 3	0.01 (0.01) 3	30.5
Site C (35 m deep)		2.74						
Seep	Mean SE n		94.9	5.1	11.0 (0.5) 4	0.31 (0.03) 4	0.01 (0.01) 4	22.7
Non-seep	Mean SE n		89.2	10.8	7.7 (1.6) 3	0.33 (0.02) 3	0.03 (0.02) 3	10.4
Slope (500 m deep)								
Seep	Mean SE n	0.76 (0.02) 9	59.9 (3.0) 2	40.1 (3.0) 2	12.4 (0.7) 2	0.97 (0.00) 2	0.06 (0.01) 2	16.8

Table 3. Bottom-water oxygen and sediment properties on the northern California margin. n = 1 where no standard error (SE) is given

non-seep sediments ($t_{74} = 2.57$, p = 0.012). The cumaceans *Diastylopsis dawsoni* ($t_{74} = 3.45$, p < 0.001) and other Lampropidae ($t_{74} = 1.96$, p = 0.054) were present in non-seep sediments but were proportionally better represented in seep settings. In addition, mysids were observed to concentrate over black patches emitting methane bubbles at Sites B and C. The mysids were abundant in slurp samples but rarely appeared in shipek grabs. Because they were demersal rather than infaunal, they were not included in the community analyses.

Although numerous species were collected in greater numbers outside of seeps, only the amphipods *Rhepoxynius abronius* ($t_{74} = 2.77$, p = 0.007) and *R. daboius* ($t_{74} = 3.62$, p < 0.001) were proportionally more abundant in non-seep than seep sediments.

Multidimensional scaling of macrofaunal assemblage data indicated significant compositional differences among the 3 shelf Sites A, B, and C, and between shelf and slope communities (Fig. 2) (ANOSIM all pairwise comparisons p < 0.001). Within each shelf site, comparisons of seep and non-seep faunas by sampling gear type (slurp or shipek) revealed no differences (Fig. 3) (ANOSIM Site A: shipek p = 0.800, slurp p = 0.333; Site B: shipek p = 0.383, slurp p = 0.314; Site C: shipek p = 0.412).

Slope settings

Most of the infaunal species present in cores from 4 Calyptogena pacifica beds were characteristic of Pacific, North American continental margin sediments (Blake & Scott 1997) (Table 5). Annelids were the dominant taxon, comprising about two-thirds of the seep infaunal collections. The most common species at both seep and non-seep sites were Mediomastus californiensis, Levinsenia gracilis, Nephtys cornuta, and various tanaids, amphipods, and ophiuroids. We observed potential differences in faunal abundance and biomass within and among clam beds (Table 6). The core from the most sulfidic sediments (clam bed 5) yielded infaunal densities 2.25 to 5 times higher than those in other clam patches or non-seep sediments (Table 6). Species or groups such as Ophryotrocha sp., oligochaetes, pyramidellid and other bivalves, amphipods and tanaids were more abundant or exclusively present in seep sediments, but the small number of inactive sediment sam-

-	Non-seep		te A ——		Site				Si		e C —	
	Non	-seep	Se	ер	Non-	seep	Se	ер	Non-	seep	Se	ер
	Total	Prop.	Total	Prop.	Total	Prop.	Total	Prop.	Total	Prop.	Total	Prop
Cnidaria												
Hydroid	0	0.000	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000
Obelia sp.	0	0.000	2	0.002	0	0.000	0	0.000	0	0.000	0	0.000
Anemone	0	0.000	0	0.000	1	0.002	1	0.002	6	0.007	0	0.000
<i>Scolanthus</i> sp. A	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Edwardsid ? sp.	3	0.010	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
Platyhelminthes												
Turbellaria	0	0.000	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
Polycladida	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Platyhelminthes sp. A	0	0.000	1	0.001	0	0.000	0	0.000	1	0.001	0	0.000
Nemertea												
Nemertea	1	0.003	4	0.004	1	0.002	0	0.000	1	0.001	1	0.012
<i>Cerebratulus</i> sp.	1	0.003	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
Lineus bilineatus	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Tubulanus polymorphus	0	0.000	1	0.001	0	0.000	1	0.002	0	0.000	0	0.000
Annelida												
Amaeana occidentalis	6	0.021	20	0.020	31	0.064	15	0.037	8	0.009	0	0.000
Ampharete arctica	1	0.003	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
Ampharete finmarchica	0	0.000	0	0.000	0	0.000	0	0.000	6	0.007	0	0.000
Ampharete labrops	0	0.000	0	0.000	0	0.000	12	0.029	0	0.000	0	0.000
Ampharetidae juvenile	0	0.000	16	0.016	1	0.002	0	0.000	0	0.000	0	0.000
<i>Aphelochaeta</i> sp.	2	0.007	2	0.002	0	0.000	0	0.000	0	0.000	0	0.00
Aphrodita refulgida	0	0.000	0	0.000	0	0.000	0	0.000	1	0.001	0	0.00
Apoprionospio pygmaea	0	0.000	0	0.000	0	0.000	0	0.000	7	0.008	4	0.049

Nemertea	1	0.003	4	0.004	1	0.002	0	0.000	1	0.001	1	0.012
Cerebratulus sp.	1	0.003	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
Lineus bilineatus	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Tubulanus polymorphus	Ő	0.000	1	0.001	Ő	0.000	1	0.002	Ő	0.000	Ő	0.000
	0	01000	-	01001	Ū	01000	-	01002	0	01000	0	01000
Annelida	0	0.004	0.0	0.000	0.4	0.004	4.5	0.007	0	0.000	0	0.000
Amaeana occidentalis	6	0.021	20	0.020	31	0.064	15	0.037	8	0.009	0	0.000
Ampharete arctica	1	0.003	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
Ampharete finmarchica	0	0.000	0	0.000	0	0.000	0	0.000	6	0.007	0	0.000
Ampharete labrops	0	0.000	0	0.000	0	0.000	12	0.029	0	0.000	0	0.000
Ampharetidae juvenile	0	0.000	16	0.016	1	0.002	0	0.000	0	0.000	0	0.000
Aphelochaeta sp.	2	0.007	2	0.002	0	0.000	0	0.000	0	0.000	0	0.000
Aphrodita refulgida	0	0.000	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
Apoprionospio pygmaea	0	0.000	0	0.000	0	0.000	0	0.000	7	0.008	4	0.049
Aricidea (Acmira) catherinae	1	0.003	4	0.004	0	0.000	1	0.002	2	0.002	0	0.000
Aricidea (Allia) antennata	0	0.000	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000
Aricidea pseudoarticulata	0	0.000	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
<i>Boccardia</i> sp.	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000	0	0.000
Capitella sp.	0	0.000	2	0.002	0	0.000	16	0.039	0	0.000	3	0.037
Capitellidae	0	0.000	5	0.005	1	0.002	1	0.002	0	0.000	0	0.000
Chaetozone cf. hartmanae	30	0.105	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
Chaetozone columbiana	0	0.000	12	0.012	0	0.000	0	0.000	0	0.000	0	0.000
<i>Chaetozone</i> sp.	0	0.000	11	0.011	0	0.000	0	0.000	1	0.001	0	0.000
Chaetozone sp. A	4	0.014	7	0.007	0	0.000	1	0.002	20	0.024	2	0.025
Cirratulidae	1	0.003	4	0.004	3	0.006	1	0.002	1	0.001	0	0.000
Cossura sp.	1	0.003	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Decamastus gracilis	4	0.014	9	0.009	1	0.002	4	0.010	0	0.000	0	0.000
Dipolydora cardalia	0	0.000	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000
Dipolydora sp. juvenile	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Drilonereis sp. A	6	0.021	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
Eteone cf. brigittae	0	0.000	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000
Eteone cf. spilotus	3	0.010	0	0.000	1	0.002	0	0.000	1	0.001	0	0.000
<i>Eteone</i> sp.	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000	0	0.000
Eteone spilotus	0	0.000	9	0.009	0	0.000	0	0.000	0	0.000	0	0.000
Euclymeninae	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Glycera cf. convoluta	0	0.000	0	0.000	0	0.000	1	0.002	3	0.004	0	0.000
Glycera nana	7	0.024	10	0.010	0	0.000	0	0.000	1	0.001	0	0.000
<i>Glycera</i> sp. A	1	0.003	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
Glyceridae/Goniadidae	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Glycinde armigera	1	0.003	4	0.004	1	0.002	0	0.000	2	0.002	0	0.000
<i>Glycinde</i> sp.	1	0.003	2	0.002	0	0.000	0	0.000	0	0.000	0	0.000
Goniada maculata	1	0.003	1	0.001	1	0.002	0	0.000	2	0.002	1	0.012
Goniada sp.	1	0.003	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
Harmothoinae sp. A juvenile	0	0.000	0	0.000	1	0.002	0	0.000	1	0.001	0	0.000
Hesionella sp.	0	0.000	0	0.000	0	0.000	1	0.002	5	0.006	0	0.000
Hesionella sp. A	0	0.000	1	0.001	0	0.000	0	0.000	2	0.002	0	0.000
Heteromastus filobranchus	15	0.052	18	0.018	0	0.000	3	0.007	0	0.000	0	0.000
Heteromastus sp.	2	0.007	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Lanassa sp. juvenile	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Lanassa venusta	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Laonice cirrata	4	0.014	4	0.004	0	0.000	0	0.000	0	0.000	0	0.000
Leitoscoloplos pugettensis	9	0.031	56	0.057	15	0.031	14	0.034	31	0.037	1	0.012
Levinsenia gracilis	1	0.003	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Levinsenia oculata	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Levinsenia sp. juvenile	0	0.000	2	0.002	0	0.000	0	0.000	0	0.000	0	0.000
Listriolobus sp.	1	0.003	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
Lumbrineridae	0	0.000	1	0.001	Ő	0.000	Ő	0.000	Ő	0.000	Ő	0.000
Lumbrineris californiensis	Ő	0.000	0	0.000	1	0.002	Ő	0.000	6	0.007	Ő	0.000
Lumbrineris latreilli	Ő	0.000	Ő	0.000	2	0.004	2	0.005	Ő	0.000	Ő	0.000

I

Table 4 (continued)

Species		—— Si				— Site					te C —	
		-seep Prop.	Se Total	ep Prop.	Non- Total	seep Prop.	Se Total	ep Prop.	Non- Total	seep Prop.	Se Total	ep Prop.
Lumbrineris sp.	9	0.031	141	0.144	21	0.043	16	0.039	20	0.024	0	0.000
Magelona berkeleyi	0	0.000	1	0.001	0	0.000	0	0.000	2	0.002	Ő	0.000
Magelona hartmanae	0	0.000	0	0.000	0	0.000	0	0.000	7	0.008	0	0.000
Magelona sacculata	0	0.000	0	0.000	8	0.017	10	0.025	68	0.081	11	0.136
Magelona sp. A	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Maľmgreniella scriptoria	0	0.000	0	0.000	25	0.052	9	0.022	1	0.001	0	0.000
Mediomastus ambisetus	9	0.031	75	0.076	5	0.010	1	0.002	0	0.000	0	0.000
Mediomastus californiensis	9	0.031	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
Mediomastus spp.	0	0.000	102	0.104	15	0.031	2	0.005	0	0.000	1	0.012
Melina oculata	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Myriochele gracilis	1	0.003	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Myriochele oculata	0	0.000	2	0.002	0	0.000	0	0.000	0	0.000	0	0.000
<i>Myriochele</i> sp.	1	0.003	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
<i>Myriochele</i> sp. M	1	0.003	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
Naineris ? dendritica	0	0.000	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
Nephtyidae	0	0.000	1	0.001	0	0.000	1	0.002	10	0.012	0	0.000
Nephtys caecoides	0	0.000	0	0.000	2	0.004	2	0.005	6	0.007	0	0.000
Nephtys californiensis	4	0.014	11	0.011	48	0.099	16	0.039	158	0.187	15	0.185
Nephtys cornuta	11	0.038	87	0.089	5	0.010	3	0.007	0	0.000	0	0.000
Nephtys ferruginea	2	0.007	7	0.007	0	0.000	0	0.000	0	0.000	0	0.000
Nereididae	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000	0	0.000
<i>Nereis</i> sp. A	0	0.000	0	0.000	0	0.000	2	0.005	0	0.000	0	0.000
Notomastus cf. lineatus	0	0.000	0	0.000	9	0.019	2	0.005	3	0.004	2	0.025
Notomastus sp.	0	0.000	3	0.003	5	0.010	0	0.000	0	0.000	0	0.000
Ophelina acuminata	1	0.003	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Orbinia johnsoni	0	0.000	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
Orbiniidae	1	0.003	3	0.003	1	0.002	1	0.002	2	0.002	0	0.000
Paraonidae	0	0.000	6	0.006	0	0.000	2	0.005	3	0.004	0	0.000
Paraprionospio pinnata	3	0.010	9	0.009	0	0.000	0	0.000	0	0.000	0	0.000
Pholoe glabra	2	0.007	5	0.005	0	0.000	0	0.000	0	0.000	0	0.000
Phyllochaetopterus prolifica	0	0.000	0	0.000	0	0.000	3	0.007	0	0.000	0	0.000
Phyllodoce longipes	1	0.003	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
Phylo felix	0	0.000	0	0.000	13	0.027	2	0.005	6	0.007	0	0.000
Podarkeopsis glabrus	0	0.000	3	0.003	3	0.006	12	0.029	3	0.004	0	0.000
Polycirrus sp.	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000	1	0.012
Polynoidae	0	0.000	5	0.005	0	0.000	0	0.000	0	0.000	0	0.000
Polynoidae sp. A	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000	0	0.000
Praxillella pacifica	0	0.000	5	0.005	0	0.000	0	0.000	0	0.000	0	0.000
Prionospio (Minuspio) lighti	3	0.010	14	0.014	1	0.002	1	0.002	3	0.004	0	0.000
Prionospio (P.) steenstrupi	3	0.010	2	0.002	0	0.000	0	0.000	1	0.001	0	0.000
Prionospio (P.) sp. A	0	0.000	6	0.006	1	0.002	0	0.000	1	0.001	2	0.025
Prionospio spp.	0	0.000	6	0.006	0	0.000	2	0.005	1	0.001	0	0.000
Proceraea sp.	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Scaleworm	0	0.000	5	0.005	0	0.000	0	0.000	2	0.002	0	0.000
Scalibregma inflatum	4	0.014	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Scolelepis sp.	0	0.000	0	0.000	0	0.000	0	0.000	2	0.002	0	0.000
Scoletoma tetraura	20	0.070	19	0.019	19	0.039	5	0.012	22	0.026	1	0.012
Sigalion spinosus	0	0.000	0	0.000	0	0.000	0	0.000	4	0.005	0	0.000
Sigalionidae	0	0.000	0	0.000	2	0.004	0	0.000	6	0.007	0	0.000
Sphaerosyllis ranunculus	0	0.000	5	0.005	0	0.000	0	0.000	0	0.000	0	0.000
Spiochaetopterus costarum	0	0.000	1	0.001	0	0.000	1	0.002	0	0.000	0	0.000
Spionidae	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Spiophanes berkeleyorum	3	0.010	11	0.011	2	0.004	1	0.002	2	0.002	1	0.012
Spiophanes bombyx	0	0.000	0	0.000	1	0.002	0	0.000	26	0.031	5	0.062
Sternaspis fossor	6	0.021	7	0.007	0	0.000	0	0.000	0	0.000	0	0.000
Streposyllis cf. minuta	0	0.000	0	0.000	0	0.000	0	0.000	8	0.009	0	0.000
Trochochaeta multisetosa	8	0.028	16	0.016	0	0.000	0	0.000	0	0.000	0	0.000
Mollusca	-				_	0.5-	_		_		-	
Epitoniidae	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Astyris gausapata	15	0.052	18	0.018	26	0.054	39	0.096	4	0.005	0	0.000
Nassarius mendicus	0	0.000	11	0.011	0	0.000	1	0.002	1	0.001	0	0.000
Olivella pycna	0	0.000	1	0.001	3	0.006	1	0.002	34	0.040	13	0.160
Odostomia sp.	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Turbonilla sp.	0	0.000	2	0.002	0	0.000	0	0.000	0	0.000	0	0.000
Bivalve	0	0.000	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000
Axinopsida serricata	1	0.003	8	0.008	1	0.002	2	0.005	1	0.001	0	0.000
Rochefortia tumida	23	0.080	10	0.010	1	0.002	0	0.000	1	0.001	0	0.000
Macoma carlottensis	0	0.000	0	0.000	1	0.002	0	0.000	3	0.004	0	0.000
Macoma nasuta	0	0.000	2	0.002	0	0.000	0	0.000	4	0.005	0	0.000
Tellina modesta	0	0.000	1	0.001	2	0.004	0	0.000	9	0.011	1	0.012

Table 4 (continued)

Species			te A ——				еВ —				еС —	
		-seep Prop.	Se Total	ep Prop.	Non- Total	seep Prop.	See Total	ep Prop.	Non- Total	seep Prop.	Se Total	ep Prop.
Mytilidae	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Solemya reidi	0	0.000	2	0.002	0	0.000	0	0.000	0	0.000	0	0.000
Yoldia seminuda	1	0.003	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
<i>Yoldia</i> sp.	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Crustacea												
Ampelisca agassizi	0	0.000	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
Ampelisca careyi	1	0.003	3	0.003	10	0.021	3	0.007	32	0.038	1	0.012
Amphipod unidentified	0	0.000	0	0.000	2	0.004	0	0.000	3	0.004	0	0.000
Argissa hamatipes	0	0.000	1	0.001	0 0	0.000	0	0.000	0 0	0.000	0 0	0.000
Atylus tridens Cheirimedeia zotea	0 0	$0.000 \\ 0.000$	1 3	$0.001 \\ 0.003$	0	$0.000 \\ 0.000$	1 3	0.002 0.007	0	$0.000 \\ 0.000$	0	0.000
Dyopedos sp.	0	0.000	0	0.000	1	0.000	0	0.007	0	0.000	0	0.000
Zohaustorius sencillus	0	0.000	0	0.000	0	0.000	0	0.000	2	0.002	0	0.000
Ericthonius brasiliensis	0	0.000	0	0.000	8	0.017	17	0.042	0	0.000	0	0.000
Foxiphalus obtusidens	Ő	0.000	Ő	0.000	õ	0.000	0	0.000	5	0.006	Ő	0.000
Foxiphalus xiximeus	0	0.000	0	0.000	25	0.052	0	0.000	0	0.000	0	0.000
Gammaridea	0	0.000	0	0.000	0	0.000	0	0.000	3	0.004	0	0.000
Gammaropsis thompsoni	0	0.000	5	0.005	3	0.006	9	0.022	0	0.000	0	0.000
saeidae	0	0.000	0	0.000	0	0.000	2	0.005	0	0.000	0	0.000
⁄lajoxiphalus major	0	0.000	0	0.000	3	0.006	0	0.000	4	0.005	0	0.000
Aicrojassa bousfieldi	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000	0	0.000
Neoischyrocerus claustris	0	0.000	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000
Dedicerotidae	0	0.000	0	0.000	0	0.000	2	0.005	0	0.000	0	0.000
Pachynus barnardi	1	0.003	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
Pacifoculodes spinipes Photis brevipes	0 0	$0.000 \\ 0.000$	0 1	$0.000 \\ 0.001$	2 0	$0.004 \\ 0.000$	2 1	$0.005 \\ 0.002$	3 0	$0.004 \\ 0.000$	0 0	0.000
Photis parvidons	0	0.000	0	0.001	0	0.000	0	0.002	6	0.000	0	0.000
Photis sp.	0	0.000	0	0.000	0	0.002	10	0.000	1	0.007	0	0.000
Phoxocephalidae	1	0.000	5	0.005	16	0.000	2	0.005	31	0.037	5	0.060
Pleusymtes sp.	0	0.000	0	0.000	0	0.000	2	0.005	0	0.000	0	0.000
Protomedeia prudens	0	0.000	1	0.001	0	0.000	0	0.000	0	0.000	0	0.000
Protomedeia sp. juvenile	1	0.003	0	0.000	0	0.000	Ō	0.000	0	0.000	0	0.000
Rhepoxynius abronius	5	0.017	2	0.002	12	0.025	0	0.000	15	0.018	0	0.000
Rhepoxynius daboius	2	0.007	3	0.003	19	0.039	1	0.002	59	0.070	0	0.000
Rhepoxynius homocuspidatus	0	0.000	0	0.000	1	0.002	0	0.000	6	0.007	0	0.000
Rhepoxynius lucubrans	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000	0	0.000
Rhepoxynius stenodes	0	0.000	1	0.001	0	0.000	3	0.007	4	0.005	0	0.000
Rhepoxynius vigitegus	0	0.000	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
Synchelidium sp.	0	0.000	0	0.000	3	0.006	1	0.002	2	0.002	0	0.000
Firon biocellata	0	0.000	7	0.007	1	0.002	5	0.012	0	0.000	0	0.000
Westwoodilla caecula	2	0.007	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
Diastylis quadriplicata Diastylis santamariensis	0 1	$0.000 \\ 0.003$	0 0	$0.000 \\ 0.000$	1 0	$0.002 \\ 0.000$	1 0	$0.002 \\ 0.000$	0 0	$0.000 \\ 0.000$	0 0	0.000 0.000
Diastylopsis dawsoni	11	0.003	42	0.000	3	0.000	10	0.000	7	0.000	4	0.000
Eudorella pacifica	3	0.038	42	0.043	0	0.000	0	0.023	0	0.000	4	0.049
ampropidae	0	0.000	2	0.002	0	0.000	1	0.002	0	0.000	0	0.000
Aesolamprops dillonensis	0	0.000	0	0.002	1	0.002	0	0.002	0	0.000	0	0.000
Crangon alaskensis	0	0.000	0	0.000	0	0.000	3	0.007	0	0.000	0	0.000
Eualus pusiolus	Ő	0.000	1	0.001	1	0.002	1	0.002	0	0.000	Ő	0.000
issocrangon stylirostris	Ő	0.000	0	0.000	1	0.002	0	0.000	2	0.002	Ő	0.000
Pagurus armatus	0	0.000	0	0.000	2	0.004	0	0.000	0	0.000	0	0.000
Pinnixa franciscana	1	0.003	0	0.000	0	0.000	0	0.000	0	0.000	0	0.000
Pinnixa occidentalis	0	0.000	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
Edotia sublittoralis	0	0.000	0	0.000	0	0.000	0	0.000	1	0.001	0	0.000
sopod unidentified	0	0.000	0	0.000	0	0.000	2	0.005	0	0.000	0	0.000
Munnogonium tillerae	3	0.010	2	0.002	1	0.002	0	0.000	0	0.000	1	0.012
Pleurogonium californiense	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000	0	0.000
Synidotea angulata	0	0.000	2	0.002	0	0.000	5	0.012	0	0.000	0	0.000
<i>Synidotea</i> sp. juvenile	0	0.000	0	0.000	2	0.004	1	0.002	15	0.018	0	0.000
lecticeps convexus	2 0	0.007	19	0.019	71	0.147	98 3	0.240	67 0	0.079	3	0.037
Jromunna ubiquita	U	0.000	0	0.000	0	0.000	ა	0.007	U	0.000	0	0.000
ipunculida ipuncula juvenile	0	0.000	1	0.001	0	0.000	0	0.000	1	0.001	0	0.000
chinodermata			_		_		-		a -	0 0	_	
Amphiodia urtica Lovenia cordiformis	1 0	$0.003 \\ 0.000$	6 0	$0.006 \\ 0.000$	5 0	$0.010 \\ 0.000$	2 0	$0.005 \\ 0.000$	33 1	$0.039 \\ 0.001$	2 0	$0.025 \\ 0.000$
Hemichordata Enteropneusta	0	0.000	0	0.000	1	0.002	0	0.000	0	0.000	0	0.000
C haetognatha Chaetognath	0	0.000	26	0.026	0	0.000	0	0.000	0	0.000	0	0.000
°		0.000		0.020		0.000		0.000		0.000		0.000
Total	287		982		484		408		844		81	

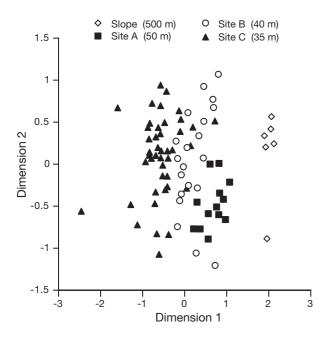
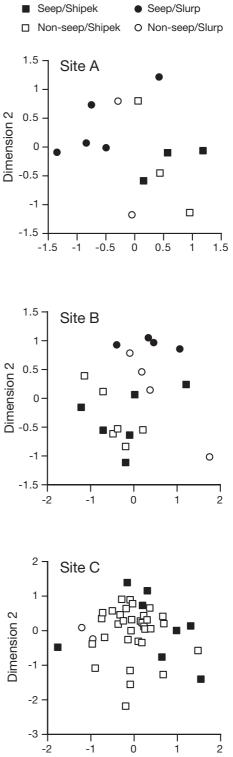


Fig. 2. Nondimensional MDS plot of macrofauna from sediments (seep and non-seep combined) at shelf Sites A, B, C, and from the slope on the northern California margin, USA. Stress value is 0.21


ples prevents conclusive statements about seep preference. A species accumulation curve for the slope macrofauna (Biodiversity Pro, 25 randomizations) suggests that 6 samples are insufficient to fully characterize the seep fauna.

Macrofaunal diversity

Rarefaction analyses, conducted to normalize species richness estimates for samples of different size, suggest there were few within-site differences in species richness between seep and non-seep sediments (Fig. 4). On average, diversity was relatively high at all sites. Information (H' [log₂], range 3.8 to 5.2) and evenness indices (J', range 0.76 to 0.87), exhibited greater differences among shelf sites than between seep and non-seep sediments within a site (Table 7). Diversity was remarkably similar at all shelf and slope sites except in Site C seep sediments, where species richness appeared lower (Fig. 4, Table 7). Here 3 species, *Magelona sacculata, Nephtys californiensis*, and *Olivella pycna*, comprised 48% of the macrofauna.

Macrofaunal nutrition

Seep and non-seep infauna exhibited similar $\delta^{13}C$ and $\delta^{15}N$ signatures within each of the 3 shelf stations (Table 8). Mean $\delta^{13}C$ values ranged from -17 to -19,

Dimension 1

Fig. 3. Nondimensional MDS plot of macrofauna from seep and non-seep sediments at Sites A (50 m deep), B (40 m deep), and C (35 m deep) on the northern California shelf, USA. Samples taken by submersible suction (slurp) and shipek grab from the surface are indicated. Stress values are 0.14 for Site A, 0.14 for Site B, and 0.21 for Site C

Table 5. Macrofaunal densities (per 54 $\rm cm^2$ core) in *Calyptogena pacifica* beds and inactive sediments on the Eel River margin slope

Clam bed species		a ²	2 ³²	d 30	ad 4a	d 4p	Average	Percentage	2	\$ ¹	<u>ک</u>	Percentage
	am	belam	oe any	per am	pe Jam b	amr	rerage	arcente	Inactive	active	Average	arcente
	Clo	Cre	Cla	Clu	Clu	Clo	P.A.	2°	The	Inc	P ₁	₽ ^{6.}
Annelida												
Polychaeta												
Ampharetidae Ampharetinae sp. B	1	1	0	0	0	1	0.5	0.007	2	0	1.0	0.017
Ampharetinae (juvenile)	0	0	0	0	0	1	0.2	0.002	0	0	0.0	0.000
Ampharetidae (unidentified)	0	0	0	2	0	0	0.3	0.005	0	1	0.5	0.008
Amphictenidae	0	4	0	0	0	0	0.0	0.000	0	4	0.5	0.000
<i>Pectinaria</i> (unidentified) Capitellidae	0	1	0	0	0	0	0.2	0.002	0	1	0.5	0.008
Mediomastus californiensis	6	3	10	7	18	27	11.8	0.177	10	8	9.0	0.151
Cirratulidae												
Aphelochaeta sp. A	0	0	1	0	0	0	0.2	0.002	0	0	0.0	0.000
Aphelochaeta (unidentified) Chaetozone commensalis	0 0	0 2	1 0	0 0	0 0	0 0	0.2 0.3	$0.002 \\ 0.005$	0	0 0	0.0 0.0	$0.000 \\ 0.000$
Chaetozone sp. A	0	0	0	0	0	0	0.3	0.000	0	3	1.5	0.000
Chaetozone (juvenile)	Ő	Ő	Ő	Ő	Ő	1	0.2	0.002	Ő	0	0.0	0.000
<i>Monticellina</i> sp. A	0	0	2	0	0	0	0.3	0.005	0	2	1.0	0.017
Tharyx-complex (unidentified		0	0	1	0	2	0.5	0.007	0	0	0.0	$0.000 \\ 0.000$
Cirratulid shell-dweller Cirratulidae (juvenile)	0	0 0	0	0 0	0 1	1 2	0.2 0.5	0.002 0.007	0 0	0 0	0.0 0.0	0.000
Cirratulidae (unidentified)	0	0	1	0	0	4	0.8	0.012	0	0	0.0	0.000
Cossuridae												
<i>Cossura</i> sp. A	0	4	0	0	0	0	0.7	0.010	3	0	1.5	0.025
<i>Cossura</i> sp. B <i>Cossura</i> (unidentified)	0 3	0 0	0 1	0 0	0 3	0 5	$0.0 \\ 2.0$	$0.000 \\ 0.030$	1	0 2	0.5 1.0	0.008 0.017
Dorvilleidae	5	0	1	0	5	5	2.0	0.000	0	4	1.0	0.000
Dorvillea sp. A	0	0	0	0	0	0	0.0	0.000	0	3	1.5	0.025
<i>Ophryotrocha</i> sp. A	0	0	1	0	3	9	2.2	0.032	0	0	0.0	0.000
<i>Parougia</i> sp. A Flabelligeridae	0	0	0	0	1	0	0.2	$0.002 \\ 0.000$	0	0	0.0	$0.000 \\ 0.000$
Flabelliderma sp. A	0	0	0	0	0	0	0.0	0.000	1	0	0.5	0.000
Glyceridae	0	0	0	0	0	Ū	010	0.000	-	0	010	0.000
<i>Ĥemipodus</i> sp. A	0	0	1	0	0	0	0.2	0.002	0	0	0.0	0.000
Goniadidae	1	0	0	0	1	0	0.0	0.000	0	0	0.0	0.000
<i>Glycinde nr. armigera</i> Hesionidae	1	0	0	0	1	0	0.3	0.005	0	0	0.0	0.000
Gyptis lobatus	0	0	0	0	0	0	0.0	0.000	0	1	0.5	0.008
<i>Hesionidae</i> sp. A	0	0	0	1	0	0	0.2	0.002	0	0	0.0	0.000
Hesionidae sp. B	0	2	0	1	0	0	0.5	0.007	1	0	0.5	0.008
Lumbrineridae Lumbrineridae sp. A	0	0	0	0	0	0	0.0	0.000	1	0	0.5	0.008
Lumbrineridae (unidentified)	1	0	0	0	0	0	0.0	0.000	0	0	0.0	0.000
Lumbrineridae (juvenile)	0	0	0	0	1	0	0.2	0.002	0	0	0.0	0.000
Maldanidae	0	0	0		0		0.0	0.040	0		0.5	0.000
Maldanidae sp. A <i>Rhodine bitorquata</i>	0	0 2	0	1	0 0	4 0	0.8 0.3	$0.012 \\ 0.005$	0	1 0	$\begin{array}{c} 0.5 \\ 0.0 \end{array}$	$0.008 \\ 0.000$
Nephtyidae	0	2	0	0	0	0	0.5	0.005	0	0	0.0	0.000
Nephtys cornuta	6	9	0	2	2	7	4.3	0.065	3	8	5.5	0.092
Orbiniidae	~	0	0	0		0	0.7	0.040	0	0	0.0	0.000
Orbiniidae (juvenile) Oweniidae	0	0	0	0	4	0	0.7	0.010	0	0	0.0	0.000
Myriochele oculata	0	0	0	2	0	0	0.3	0.005	0	0	0.0	0.000
<i>Myriochele</i> sp. A	1	Ő	0	0	0	0	0.2	0.002	0	0	0.0	0.000
Paraonidae				~	~	~		0.000	~			0.001
Cirrophorus branchiatus Levinsenia gracilis	4 6	4 4	1 3	$\begin{array}{c} 0 \\ 4 \end{array}$	$\begin{array}{c} 0\\ 2\end{array}$	0 14	1.5 5.5	$0.022 \\ 0.082$	3 16	1 3	2.0 9.5	$0.034 \\ 0.160$
Levinsenia nr gracilis	0	4	1	4	0	14	0.2	0.002	0	0	9.3 0.0	0.100
Phyllodocidae	-								-			
Éteone sp. A	0	1	0	0	0	0	0.2	0.002	0	0	0.0	0.000
Eulalia? tubiformis	0 0	0 1	0	0 0	0 0	1 0	0.2	$0.002 \\ 0.002$	0 0	0 0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$0.000 \\ 0.000$
<i>Phyllodoce</i> cf. <i>groenlandica</i> <i>Eumida/Eulalia</i> ? n. sp.	0	1	0	0	0	0	$0.2 \\ 0.2$	0.002	0	0	0.0	0.000
Phyllodocidae (unidentified)	0	0	0	0	0	0	0.0	0.000	0	1	0.5	0.008
Pilargidae												
Ancistrosyllis sp. A	0	0	0	0	0	1	0.2	0.002	0	0	0.0	0.000
Polynoidae Halosydna johnsoni	2	0	0	0	0	0	0.3	$0.000 \\ 0.005$	0	0	0.0	$0.000 \\ 0.000$
Spionidae	4	0	U	0	U	U	0.5	0.000	U	0	0.0	0.000
Prionospio (Minuspio) sp. A	0	0	0	0	0	0	0.0	0.000	3	1	2.0	0.034
Prionospio (unidentified)	1	0	0	1	0	0	0.3	0.005	0	0	0.0	0.000
Spiophanes (unidentified)	0	0	0	0	1	0	0.2	0.002	0	0	0.0	0.000

Table 5 (continued)

Clam bed species	20	Clam be	d.3a Jam ber	130 per	14ª ne	d 4b Clam be	ed ⁵ re	Percentage	1e#1	1e*1	, de	ercentage
(Jamb	Clamb	Jam C	Jam L	Jam t	Clamb	Average	Perceit	Inactive #1	hactive #	Average P	ercer
Syllidae												0.000
<i>Exogone</i> sp. A	0	0	0	0	1	1	0.3	0.005	0	1	0.5	0.008
<i>Eusyllinae</i> sp. A	0	0	0	0	0	3	0.5	0.007	0	1	0.5	0.008
Syllinae sp. A (juvenile)	0	0	0	0	0	1	0.2	0.002	0	0	0.0	0.000
Syllidae (unidentified)	0	0	1	0	0	0	0.2	0.002	0	0	0.0	0.000
Terebellida	0	0	1	0	0	0	0.2	0.002	0	0	0.0	0.000
Terebellidae Amphitritinae?	0	0	0	0	0	2	0.5	0.007	0	2	1.0	0.017
Trichobranchidae	0	0	0	0	0	3	0.5	$0.007 \\ 0.000$	0	2	1.0	0.017 0.000
Terebellides sp.	0	0	0	0	0	1	0.2	0.000	0	0	0.0	0.000
Unknown sp. B	0	0	0	0	0	1	0.2	0.002	0	0	0.0	0.000
Unidentified	0	0	0	0	1	0	0.2	0.002	0	1	0.5	0.000
Oligochaeta	0	0	0	0	T	0	0.2	0.002	0	1	0.5	0.000
Oligochaeta sp. A	0	0	0	0	0	3	0.5	0.007	0	0	0.0	0.000
Oligochaeta sp. A	0	0	0	0	0	1	0.2	0.007	0	0	0.0	0.000
Oligochaeta sp. C	2	0	1	1	0	0	0.7	0.010	0	0	0.0	0.000
Oligochaeta sp. D	2	Ő	0	0	3	Ő	0.8	0.012	0	Ő	0.0	0.000
Oligochaeta sp. E	0	Ő	Ő	Ő	0	Ő	0.0	0.000	1	Ő	0.5	0.008
5	0	0	0	0	0	0	010	01000	-	Ū	010	
Other vermes Nemertea	1	2	1	1	0	3	1.3	0.020	3	0	1.5	$0.000 \\ 0.025$
Turbellaria	0	0	0	0	0	1	0.2	0.0020	0	0	0.0	0.000
Crustacea Amphipoda Gammaridea												
Ampelisca spp.	0	0	0	1	0	0	0.2	0.002	0	0	0.0	0.000
Listriella cf. eriopisa	1	0	1	0	6	7	2.5	0.037	1	5	3.0	0.050
Corophioidea								0.000				0.000
Gammaropsis	0	1	6	1	2	5	2.5	0.037	3	0	1.5	0.025
(Podoceropsis) ocellata	0	1		1		5		0.037				0.025
Protomedeia sp. A	0	1	0	0	1	1	0.5	0.007	1	0	0.5	0.008
Photis sp. A	0	0	0	0	0	1	0.2	0.002	0	0	0.0	0.000
Corophioidea (unidentified)	0	0	0	0	0	1	0.2	0.002	0	0	0.0	0.000
Isopoda												0.000
Pleurogoniidae	0	0	0	0	0	2	0.3	0.005	1	0	0.5	0.008
Eurycopidae	0	1	0	0	0	0	0.2	0.002	0	0	0.0	0.000
Cumacea												
Bodotriidae												
Bodotriidae sp.A	0	0	1	0	0	0	0.2	0.002	0	0	0.0	0.000
Diastylidae	0		0	0	0	0	0.0	0.000		0	0.5	0.000
Diastylis pellucida	0	1	0	0	0	0	0.2	0.002	1	0	0.5	0.008
Nannastacidae	4	0	0	4	0	4	0.5	0.007	0	0	0.0	0.000
Campylaspis rufa	1	0	0	1	0	1	0.5	0.007	0	0	0.0	$0.000 \\ 0.000$
Tanaidacea Tanaidacea sp. A	2	6	3	1	5	25	7.0	$0.000 \\ 0.105$	1	4	2.5	0.000
Tallaluacea sp. A	7	0	3	1	5	23	7.0	0.105	1	4	2.0	0.042
Mollusca												
Aplacophora	4	~	0	~	~	~	0.0	0.000	~	~	4 5	0.005
Aplacophora sp. A	1	0	0	0	0	0	0.2	0.002	0	3	1.5	0.025
Bivalvia	0	0	0	0		~	0.7	0.040	~	0	0.0	0.000
Calyptogena sp. A	0	0	0	0	4	0	0.7	0.010	0	0	0.0	0.000
Lucinidae sp. A	1	0	1	0	0	0	0.3	0.005	0	1	0.5	0.008
Lucinidae sp. B	1	0	0	0	0	0	0.2	0.002	0	0	0.0	0.000
Bivalvia sp. A	0	0	0	0	1	0	0.2	0.002	0	0	0.0	0.000
Bivalvia sp. B	0	1	0	0	0	0	0.2	0.002	0	0	0.0	0.000
Gastropoda	0	0	0	0	0	4	0.0	0.000	0	0	0.0	0.000
Archaeogastropoda sp. A	0	0		0	0	1	0.2	0.002	0		0.0	0.000
Lirobittium paganicum	0	0	0	1	0 7	0	0.2	0.002	0	0	0.0	0.000
Pyramidellidae sp. B (<i>Fargoa</i> ?) <i>Oenopota</i> sp. A	0 0	0 0	0 0	0 0	<i>†</i> 0	0 1	1.2 0.2	0.017 0.002	0 0	0	0.0 0.0	$0.000 \\ 0.000$
Opisthobranchia spp.	4	0	0	0	0	1 2	0.2	0.002	0	0	0.0	0.000
Gastropoda (unidentified)	4	1	0	1	2	2	1.0 0.7	0.015	0	0	0.0	0.000
1 (0	1	1	1	2	0	0.7	0.010	0	2	1.0	0.000
Scaphopoda	0	0	1	U	U	0	0.2	0.002	0	2	1.0	0.017
Miscellaneous												
Hydroid	0	0	0	0	0	0	0.0	0.000	0	0	0.0	0.000
Ophiuroidea	2	3	1	2	0	11	3.2	0.047	2	5	3.5	0.059
Total macrofauna	50	51	42	32	70	156	66.8		58	61	59.5	
	-		-		-						=	

					— Inac	tive —						
Clam bed:	Bed 2	Bed 3a	Bed 3b	Bed 4a	Bed 4b	Bed 5	Mean	SE	Site 1	Site 2	Mean	SE
Ind. m ⁻²	9365	9552	7867	5994	13111	29219	12518	3475	10863	11425	11444	140.48
Biomass, g m ⁻²												
Annelida	3.36	7.83	5.82	4.32	8.25	37.91	11.25	5.39	8.95	57.40	33.18	12.11
Other	2.95	2.07	3.88	17.81	3.13	45.51	12.56	7.02	1.51	0.90	1.20	0.15
Total	6.31	9.90	9.70	22.13	11.38	83.43	23.81	12.12	10.47	58.29	34.38	11.96

Table 6. Density and biomass of macrofauna (>0.3 mm) in seep and inactive sediments on the northern California margin (500 mdeep). Calyptogena pacifica are excluded. a and b: separate cores from the same clam bed

consistent with a marine phytoplankton-based food chain. There was little evidence of lighter δ^{13} C signatures that would indicate chemosynthetically derived food sources in shelf sediments. However, some of the capitellids, *Mediomastus*, *Heteromastus* and *Capitella* sp., and polychaetes in the genera *Nephtys* and *Sternaspis*, exhibited lower δ^{13} C values (-19.2 to -23.0) than other infauna (Table 8). δ^{15} N values were quite variable, probably reflecting a range of trophic levels, but did not differ among shelf sites.

Of the 19 infaunal invertebrates examined isotopically from clam beds on the slope, those from clam bed 1 exhibited lighter δ^{13} C signatures (-24.6 ± 1.1) (Fig. 5) than those for individuals from clam bed 2 (-19.9 ± 0.3), or inactive sediments (-18.6 ± 0.6) ($F_{2,25}$) = 12.93, p < 0.001). Macrofauna from clam beds 1 and 2 had lighter average δ^{13} C signatures than those from shelf sites ($F_{3,95}$ = 43.3, p < 0.001). A single dorvilleid polychaete, *Dorvillea* sp., had a very light δ^{13} C signature (-33.5), suggestive of chemoautotrophic symbionts or selective feeding on free-living chemoautotrophic bacteria. δ^{15} N values were variable (Fig. 5), but did not differ among clam beds and inactive sediments. However, δ^{15} N values were considerably greater for slope macrofauna from the 2 clam beds and inactive slope sediments (Fig. 5) than for shelf macrofauna (Table 8) ($F_{3,95} = 25.2$, p < 0.001).

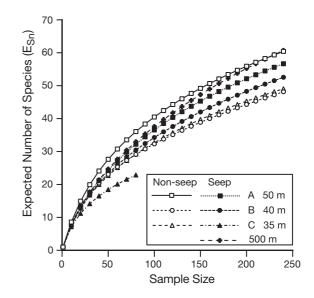


Fig. 4. Rarefaction curves showing expected number of macrofaunal species (≥0.3 mm) for a given sample size (no. of ind.) in pooled samples (seep vs non-seep) from 4 locations on the northern California margin

 Table 7. Diversity indices of shelf and slope macrofauna on the northern California margin. Data are for pooled cores unless otherwise indicated. ** Average of 6 cores

		te A Non-seep		te B Non-seep		e C Non-seep	Seen	Slope Inactive site 1	Inactive site 2
	beep	ton seep	beep 1	ton seep	beep i	ton seep	веер	indenve site i	inactive site 2
Information index $H'(\log_2)$	5.02	5.22	4.66	4.80	3.85	4.76	4.95 (3.83)*	3.45	3.89
Evenness J'	0.76	0.87	0.77	0.79	0.85	0.76	0.79 [´] (0.85)*	0.81	0.85
Rank 1 dominance (%)	14.4ª	10.5 ^b	24.0 ^c	14.7 ^c	18.5 ^d	18.7 ^d	17.7 ^e	27.6 ^f	13.1 ^e
Most abundant species:	^b Chaeto	ineris sp. zone hartn ps convexu		^e Medio	ys califor mastus ca enia grac	aliforniensi	is		

Species			8	δ ¹³ C ——						δ ¹⁵ N		
		Site A Non-seep		ite B Non-seep		te C Non-seep		Site A Non-seep		ite B Non-seep		ite C Non-seep
Annelida		F		F		F			F	P	P	
Capitellidae												
<i>Capitella complex</i> Capitellidae (unidentifie	d)	-16.3	-19.6		-16.4			9.4	8.2		7.6	
Heteromastus filobranch							8.6	5.4				
Heteromastus filobranch							8.5					
<i>Mediomastus</i> sp. <i>Notomastus</i> cf. <i>lineatus</i>	-19.2				-23.0		8.2				8.7	
Lumbrineridae												
Lumbrineris sp. A Lumbrineris sp. A	-17.8 -17.6						11.2 11.3	11.5 11.5				
Magelonidae	-17.0	-17.5					11.5	11.5				
Magelona sacculata					-15.7	-17.8					21.5	8.6
<i>Magelona sacculata</i> Nephtyidae						-16.4						10.6
Nepĥtys californiensis					-18.9	-19.2					8.3	10.4
Nephtys californiensis Nephtys cornuta	-19.6	-21.6			-19.6	-17.0	8.0	7.1			11.5	9.3
Orbiniidae	-19.0	-21.0					0.0	7.1				
Leitoscoloplos sp.	. –17.3				00.0	477.4	9.2				40.0	7.0
Leitoscoloplos pugettens Leitoscoloplos pugettens					-20.6	$-17.1 \\ -17.0$					10.3	7.9 7.9
Polycirrinae												
Amaeana sp. Amaeana sp.				-16.6 -17.2						8.8 8.6		
Spionidae				-17.2						0.0		
Paraprionospio pinnata	-16.8						11.5	10.0				
Paraprionospio pinnata Spiophanes berkeleyoru	-16.8 m -19.8					-17.4	11.3 11.1					8.5
Spiophanes bombyx					-17.4						8.9	
Sternaspidae Sternaspis fossor	-18.9	-18.3					7.1	7.3				
Sternaspis fossor	-19.2						7.1	7.5				
Trochochaetidae Trochochaeta multisetosa	a –18.1						11.1					
Trochochaeta sp.	-10.1	-17.6					11.1	8.8				
Mollusca												
Columbellidae												
Astyris gausapata Lasaeidae	-17.0	-18.0					11.5	7.8				
Rochefortia tumida		-19.3						9.2				
Olividae Olivella pycna					-19.3	-17.7					8.7	9.3
Olivella pycna					-17.8	-18.6					9.0	8.7
Olivella pycna						-19.8						8.8
Tellinidae Macoma nasuta	-18.9						7.5					
Macoma nasuta	-17.9						7.7					
Arthropoda												
Diastylidae Diastylopsis dawsoni		-17.4						7.9				
Diastylopsis dawsoni		-17.1						8.0				
Diastylopsis dawsoni Diastylopsis dawsoni					-17.3 -16.6						$\frac{8.6}{8.4}$	
Diastylopsis dawsoni					-10.0 -18.0						7.2	
Mysidae	-15.8						9.6					
Mysidae Phoxocephalidae	-16.3				-19.9	-16.6	9.2				10.5	11.5
Phoxocephalidae					-20.1	-18.3					10.4	11.6
Sphaeromatidae Tecticeps convexus			-17.8		-17.9	-16.9			7.5		8.5	9.8
Tecticeps convexus					-17.6						8.2	
Caridea Caridea	-15.1 -15.0						10.8 10.7					
Echinodermata	10.0											
Ophiuroidea					-15.9	-17.3					11.5	7.5
Ophiuroidea					-15.2	-17.3					11.3	7.6
Nemertina Nemertea					-16.4						8.6	
		10.0	10 7	10.0		15.0	0.0	0.0	7.0	0.7		0.0
Mea SE	n –17.7 0.3	$^{-18.0}_{0.4}$	-18.7 0.9	$^{-16.9}_{0.3}$	$-18.1 \\ 0.5$	$-17.6 \\ 0.3$	$9.6 \\ 0.4$	$9.0 \\ 0.5$	7.8 0.4	8.7 0.1	9.9 0.7	9.2 0.3

Table 8. Stable isotopic signatures of northern California shelf macrofauna

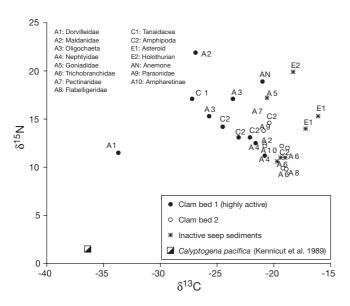


Fig. 5. Dual isotope plot of infaunal invertebrate isotopic signatures from 3 locations at ca 500 m deep on the northern California margin. A = annelid, C = crustacean, E = echinoderm

DISCUSSION

Is there evidence for specialization among seep macrofauna?

Shelf

The few existing studies comparing seep to non-seep macrofauna have yielded varied results that differ with setting and taxon (Table 1). At shelf depths, hydrocarbon seeps (Davis & Spies 1980, Montagna et al. 1989) methane pockmarks (Dando et al. 1991, 1994), and 'bubbling reef' sediments (Jensen et al. 1992) support many taxa typical of non-seep settings. Some seep specialists with chemosynthetic symbionts are present in these environments, but they are usually megafaunal (pogonophorans and thyasurid bivalves) or meiofaunal (nematodes). The northern California shelf and slope faunas characterized in this study do not appear to differ substantially from nearby non-seep assemblages. The most common infaunal taxa were present in both seep and non-seep sediments. Our data suggest that some rarer forms may select for or against seep settings on the shelf (Table 4), but confirmation of habitat preferences would require additional collections. Like Vanreusel et al.'s (1997) multivariate comparisons of hydrothermal vent and non-vent nematode genera, we found greater similarity of macrofaunal communities in seep and non-seep sediments compared within shelf sites (A, B, or C) than among seep faunas at different sites (Fig. 2, Table 4). We speculate that shelf

environmental properties such as flow, particle size or localized terrestrial inputs can have greater influence on infaunal community composition than methane seepage.

The regular presence of Capitella sp. in shelf seep sediments, and their absence in our non-seep samples, is consistent with known sulfide tolerances for the genus (Thiermann et al. 1997, Gamenick et al. 1998a,b). Capitella may cue to sulfides during settlement (Cuomo 1985) or may require sulfidic conditions for maximal growth (Tsutsumi 1997). However, Capitella never comprised more than 5% of the shelf seep assemblage, and was absent in seeps on the slope (Table 4). Amphipods in the genus *Rhepoxynius* are sensitive to sulfides (Knezovich et al. 1996). Their apparent avoidance of seeps on the northern California shelf is consistent with this behavior. At Site A, the most quiescent and fine-grained of the shelf sites, the dominant taxa Lumbrineris sp., Mediomastus spp., and Nephtys cor*nuta* together comprised >41% of the seep fauna but only 13% of the non-seep fauna. These deposit-feeding taxa, capable of responding to sediment enrichment, contribute to higher dominance in seep than non-seep sediments.

Slope

The infaunal assemblage at the 500 m seep site was generally characteristic of North American upper slope sediments (Lissner et al. 1988, Hyland et al. 1991). Exceptions were the vesicomyid *Calyptogena pacifica* and lucinid bivalves, which are symbiont-bearing and characteristic of seep or oxygen minimum zone sediments (Sibuet & Olu 1998, Levin et al. 2000). Together the polychaetes Mediomastus spp. and Levinsenia gracilis comprised over 25% of the infauna. Mediomastus spp. are typical of non-seep sediments, but usually occur at shallower depths than 500 m (Lissner et al. 1988). Smith et al. (1998) studied infaunal community composition beneath and near another deep-water reducing environment, at whale falls in the Santa Catalina Basin (1240 m). As in the present study, they found little evidence of specialization on enrichment or sulfides.

Quantitative macrofaunal density estimates were available in the present study only for slope seep sediments. The average macrofaunal density at the 500 m seep (12518 ind. m^{-2}), was typical of bathyal margins of the Atlantic (Blake & Grassle 1994), Pacific (Lissner et al. 1988, Hyland et al. 1991, Vetter & Dayton 1998) and Indian Oceans (Levin et al. 1997, 2000). Density differences among cores from different northern California clam beds could reflect differing levels of seepage in each bed. Clam bed 5, with high densities of *Mediomastus* spp. and dorvilleids, appeared more active than the other clam beds. Unfortunately, no pore-water profiles were available to confirm this. Other investigators have reported elevated densities of meiofauna (Buck & Barry 1998) and macrofauna (Davis & Spies 1980) at seeps.

Reduced macrofaunal diversity at methane seeps might be expected if sediments were physiologically stressful or were organically enriched settings (Levin & Gage 1998). Reduced macrofaunal diversity has been reported from North Sea pockmarks (115 m) (Dando et al. 1991) and from hydrothermal settings in the Galapagos, at 21°N (2600 to 2700 m, Grassle et al. 1985) and in the Aegean Sea (5 to 10 m, Thiermann et al. 1997). Vanreusel et al. (1997) noted reduced species diversity and greater dominance in nematode assemblages at hydrothermal vents in the North Fiji Basin. We did not observe any diversity reduction in most northern California shelf seep patches, except at Site C (35 m) (Fig. 4, Table 7). Hydrocarbon seeps off Santa Barbara (16 m) also did not exhibit reduced macrofaunal diversity (Montagna et al. 1989).

Do seep infauna exhibit nutritional specialization?

Food sources for the shelf and slope infauna on the northern California margin may include phytoplankton-based organic matter, terrestrial material deposited by Eel River flood events, and chemosynthetically derived organic matter. Marine phytoplankton in productive coastal waters typically have $\delta^{13}C$ signatures between -15 and -23 at temperate latitudes (Fry & Wainright 1991) and approximately -19 on the Eel River slope (Leithold & Hope 1999). Organic matter from the Eel River has a $\delta^{13}C$ value of about –25 (Leithold & Hope 1999), whereas invertebrates with symbiotic sulfur oxidizing or methane consuming bacteria may have δ^{13} C signatures of -30 to -70 (Brooks et al. 1987, Conway et al. 1994). Based on average δ^{13} C values, which are between -17 and -19 (Table 8), shelf faunas of both seep and non-seep sediments appear to rely primarily on phytoplankton-based organic matter. This occurs despite the fact that terrestrial debris (twigs and wood chips) was visible in most sediment samples.

The absence of strong chemosynthetic contribution to nutrition of benthos appears to be a widespread feature of shallow water seeps and vents. Carbon isotopic studies of macrofauna in a North Sea methane seep revealed most fauna with δ^{13} C signatures between –16 and –20, indicating little nutritional contribution of methane-derived carbon or sulfur oxidation (Dando et al. 1991). Similar results were obtained for epifauna on carbonates produced at seeps in the Kattegat (10 to 12 m, Jensen et al. 1992). Tissues of benthic fishes and crustaceans at a 132 m methane seep off Oregon exhibited detectable but very minor contributions of seep-associated C and N (Juhl & Taghon 1993). The lesser dependence on chemoautotrophic-based food sources exhibited by shallow-water seep macrofauna, relative to those at deep-water seeps (Conway et al. 1994), may result from the greater availability of photosynthetically produced food in shallow water.

On the Eel River margin, isotopic signatures of the slope fauna (Fig. 5) differ from those on the shelf (Table 8). The lighter $\delta^{13}C$ and higher $\delta^{15}N$ values for the slope organisms suggest one or more of the following scenarios: (1) organics derived from Eel River flood deposits may be a significant dietary component of infauna, (2) sulfur oxidizing or methanotrophic bacteria may be of nutritional importance in combination with a phytoplankton-based diet, and (3) the organic matter is derived from heavy, upwelled nitrogen, or is extensively reworked before reaching the slope, creating high δ^{15} N values. Approximately 5% of the annual Eel River sediment discharge accumulates on the slope between 450 and 600 m (Alexander & Simoneau 1999), providing a ready source of lighter carbon and recycled nitrogen. Only a dorvilleid polychaete and presumably the clam Calyptogena pacifica (analyzed from this region by Kennicutt et al. 1989) exhibited the light δ^{13} C values characteristic of chemosynthesis-based nutrition. However, the lighter $\delta^{13}C$ of clam bed 1 infauna (Fig. 5) may indicate some reliance by other taxa on chemosynthetic bacteria. Overall, the slope observations suggest that there are nutritional differences among species, among seep sites (clam beds) on scales of 10s of meters, and between inactive and active sites.

Conclusions

Information about macrofaunal composition, density, diversity and trophic pathways suggests that methane seeps on the northern California continental shelf and slope do not support macrofaunal assemblages that are highly distinct from the ambient faunas. On the shelf, seep patches are small and may be ephemeral due to frequent, storm-induced disturbance and shifting of methane vent sites. Shelf seeps appear to be inhabited by a subset of the ambient shelf fauna that is tolerant of sulfidic conditions. The absence of typical seep epifauna (vesicomyid clams, vestimentiferan or pogonophoran tubeworms, and bacterial mats) suggests that the shelf seep habitats sampled were too small or short lived for trophic specialization to occur among infauna. In addition, the high mobility of many shelf organisms, particularly the crustaceans, might reduce the likelihood that they will remain localized within seep

patches. Our sampling took place just following a major storm that resuspended bottom sediments on the shelf. Bacterial mats have been observed at Site B during summer by other investigators (Orange et al. 1997, Orange et al. pers. comm.).

The slope seep macrofauna exhibited typical upper bathyal densities, taxonomic composition, and diversity patterns. A similar result has been obtained for foraminifera sampled at our same slope study site (Rathburn et al. 2000). The seeps support several macrofaunal species that utilize either symbiotic or free-living chemosynthetic bacteria. However, the majority of infaunal taxa are carnivores or deposit feeders that probably utilize mainly terrestrial or marine organic matter of photosynthetic origin.

It would be premature to generalize these findings to other seep environments. Shelf and shallow bathyal faunas regularly encounter patches of disturbed, stressed or sulfidic sediments in non-seep circumstances, such as beneath large-animal or plant falls (Stockton & DeLaca 1982, Smith et al. 1998) or within oxygen minimum zones (Gallardo et al. 1995, Levin & Gage 1998). Thus, at least some bathyal and shelf taxa may be preadapted to the geochemical conditions associated with seeps. Abyssal faunas, however, may be less likely to experience sulfidic or hypoxic conditions in the absence of seepage or venting. As a result, we predict that physiological, trophic, and morphological specialization, as well as shifts in community structure, are potentially more likely among seep infauna on the continental rise and abyss.

Acknowledgements. We thank the captains and crews of the RV 'Laney Chouest' and the RV 'McGaw', the pilots and staff of the 'Delta' and 'Sea Cliff' submersibles and ROV 'Scorpio'. For assistance at sea we thank M. Tryon, K. Brown, M. Saladin, Z. Held, J. Gieskes, C. Mahn, A. Baco, and N. von Mirbach. Non-polychaete identifications were provided by D. Cadien. Oxygen analyses were run by R. Patrick and D. Masten at the Norpax facility at the Scripps Institution of Oceanography. Comments from anonymous reviewers improved the manuscript. The research was supported by Grants UAF 97-0037, 98-0038, and 00-0050 from the NOAA National Undersea Research Program, Alaska, and by matching funds from the Scripps Institution of Oceanography Director's office.

LITERATURE CITED

- Alexander CR, Simoneau AM (1999) Spatial variability in sedimentary processes on the Eel continental slope. Mar Geol 154:243–254
- Barry JP, Greene HG, Orange DL, Baxter CH, Robison BH, Kochevar RE, Nybakken JW, Reed DL, McHugh CM (1996) Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep-Sea Res 43:1739–1762
- Barry JP, Kochevar RE, Baxter CH (1997) The influence of pore-water chemistry and physiology in the distribution of

vesicomyid clams at cold seeps in Monterey Bay: implications for patterns of chemosynthetic community organization. Limnol Oceanogr 42:318–328

- Beauchamp B, Krouse HR, Harrison JC, Nassichuk WW, Eliuk LS (1989) Cretaceous cold-seep communities and methane-derived carbonates in the Canadian Arctic. Science 244:53–55
- Blake JA, Grassle JF (1994) Benthic community structure on the U.S. South Atlantic slope off the Carolinas: spatial heterogeneity in a current-dominated system. Deep-Sea Res II 41:835–874
- Blake JA, Scott PV (1997) Taxonomic atlas of the Santa Maria Basin and western Santa Barbara Channel, Vol 1. Santa Barbara Museum of Natural History, Santa Barbara, CA
- Boulegue J, Benedetti EL, Dron D, Mariotti A, Letolle R (1987a) Geochemical and biogeochemical observations on the biological communities associated with fluid venting in Nankai Trough and Japan Trench subduction zones. Earth Planet Sci Lett 83:343–355
- Boulegue J, Iijama JT, Charlou JL, Jebwab J (1987b) Nankai Trough, Japan Trench and Kuril Trench: geochemistry of fluids sampled by submersible 'Nautile'. Earth Planet Sci Lett 83:363–375
- Brewer PG, Orange D, Friederich G, Peltzer E, Kvenvolden KA, Lorenson T, Bullister JL, Orr F Jr (1997) Gas hydrates and global change: a preliminary case study offshore northern California. EOS Transactions. AGU 78 (46):F340
- Brooks JM, Kennicutt MC II, Fisher CR, Macko SA, Cole K, Childress JJ, Bidigare RR, Vetter RD (1987) Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science 238:1138–1142
- Buck KR, Barry JP (1998) Monterey Bay cold seep infauna: quantitative comparison of bacterial mat meiofauna with non-seep control sites. Cah Biol Mar 39:333–335
- Cary C, Fry B, Felbeck H, Vetter RD (1989) Multiple trophic resources for a chemoautotrophic community at a cold water brine seep at the base of the Florida Escarpment. Mar Biol 100:411–418
- Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Natural Environmental Research Council, United Kingdom and Plymouth Marine Laboratory, Plymouth
- Conway N, Kennicutt M II, Van Dover C (1994) Stable isotopes in the study of marine chemosynthetic based ecosystems. In: Lajtha K, Michener R (eds) Stable isotopes in ecology and environmental sciences. Blackwell Scientific Publications, London, p 158–186
- Cuomo MC (1985) Sulphide as a larval settlement cue for *Capitella* sp. I. Biogeochemistry 1:169–181
- Dando PR, Austen MC, Burke RA Jr, Judd AG, Moore DC, O'Hara SCM, Schmaljohann R, Southward AJ (1991) Ecology of a North Sea pockmark with an active methane seep. Mar Ecol Prog Ser 70:49–63
- Dando PR, Bussmann I, Niven SJ, O'Hara SCM, Schmaljohann R, Taylor LJ (1994) A methane seep area in the Skagerrak, the habitat of the pogonophore *Siboglinum poseidoni* and the bivalve mollusc *Thyasira sarsi*. Mar Ecol Prog Ser 107:157–167
- Davis PH, Spiess RB (1980) Infaunal benthos of a natural petroleum seep: study of community structure. Mar Biol 59:31-41
- Dron D, Boulegue J, Taira A, Rangin C (1987) Geochemistry of the Tenryu Canyon deep sea fan biological community (Kaiko). Earth Planet Sci Lett 83:356–362
- Fry B, Wainright SC (1991) Diatom sources of ¹³C-rich carbon in marine food webs. Mar Ecol Prog Ser 76:149–157
- Gallardo VA, Carrasco FD, Roa R, Canete JJ (1995) Ecological

patterns in the benthic macrobiota across the continental shelf off central Chile. Ophelia 40:167–188

- Gamenick I, Abbiati M, Giere O (1998a) Field distribution and sulphide tolerance of *Capitella capitata* (Annelida: Polychaeta) around shallow water hydrothermal vents off Milos (Aegean Sea). A new sibling species? Mar Biol 130: 447–453
- Gamenick I, Vismann B, Grieshaber MK, Giere O (1998b) Ecophysiological differentiation of *Capitella capitata* (Polychaeta). Sibling species from different sulfidic habitats. Mar Ecol Prog Ser 175:155–166
- Gamo T, Sakai H, Ishibashi JI, Shitashima K, Boulegue J (1992) Methane, ethane and total inorganic carbon in fluid samples taken during the 1989 Kaiko-Nankai Project. Earth Planet Sci Lett 109:383–390
- Grassle JF, Brown-Leger S, Morese-Porteous L, Petrecca R, Williams I (1985) Deep-sea fauna of sediments in the vicinity of hydrothermal vents. Biol Soc Wash Bull 6:443–452
- Guezennec J, Fiala-Medioni A (1996) Bacterial abundance and diversity in the Barbados Trench determined by phospholipid analysis. FEMS Microbiol Ecol 19:83–93
- Han MW, Suess E (1986) Subduction-induced pore fluid venting and the formation of authigenic carbonates along the Cascadia continental margin: implications for the global Ca-cycle. Palaeogeogr Palaeoclimatol Palaeoecol 71:97–118
- Hovland M, Judd AG (1988) Seabed pockmarks and seepages, impact on geology, biology and the marine environment. Graham and Trotman Inc Publ, London
- Hurlbert S (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586
- Hyland J, Baptiste E, Campbell J, Kennedy J, Kropp R, Williams S (1991) Macroinfaunal communities of the Santa Maria Basin on the California outer continental shelf and slope. Mar Ecol Prog Ser 78:147–161
- Jensen P (1986) Nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. Mar Biol 92:489–503
- Jensen P, Aagaard I, Burke R Jr, Dando P, Jorgensen N, Kuijpers A, Laier T, O'Hara S, Schmaljohann R (1992) 'Bubbling reefs' in the Kattegat: submarine landscapes of carbonate-cemented rocks support a diverse ecosystem at methane seeps. Mar Ecol Prog Ser 83:103–112
- Jones RW (1993) Preliminary observations on benthonic foraminifera associated with biogenic gas seep in the North Sea. In: Jenkins DG (ed) Applied micropaleontology. Kluwer Academic Publishers, Dordrecht, p 69–91
- Jones RW (1996) Preliminary observations on benthonic foraminifera associated with petroleum seeps. In: Jones RW (ed) Micropaleontology in petroleum exploration. Oxford University Press, New York, p 179–196
- Juhl A, Taghon G (1993) Biology of an active methane seep on the Oregon continental shelf. Mar Ecol Prog Ser 102: 287–294
- Juniper SK, Sibuet M (1987) Cold seep benthic communities in Japan subduction zones; spatial organization, trophic strategies and evidence for temporal evolution. Mar Ecol Prog Ser 40:115–126
- Kennicutt MC II, Brooks JM, Bidigare RR, McDonald SJ, Adkison DL, Macko SA (1989) An upper slope 'cold' seep community: northern California. Limnol Oceanogr 34: 635–640
- Knezovich JP, Steichen DJ, Jelinski JA, Anderson SL (1996) Sulfide tolerance of four marine species used to evaluate sediment and pore-water toxicity. Bull Environ Contam Toxicol 57:450–457
- Kulm LD, Suess E, Moore JC, Carson B, Lewis BT, Ritger

SD, Kadko DC, Thornburg TM, Embley RW, Rugh WD, Massoth GJ, Langseth MG, Cochrane GR, Scamman RL (1986) Oregon subduction zone: venting, fauna and carbonates. Science 231:561–566

- Leithold EL, Hope RS (1999) Deposition and modification of a flood layer on the northern California shelf: lessons from and about the fate of terrestrial particulate organic carbon. Mar Geol 154:183–195
- Levin LA, Gage JD (1998) Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep-Sea Res II 45:129–164
- Levin LA, Gage J, Lamont P, Cammidge L, Patience A, Martin C (1997) Infaunal community structure in a low-oxygen organic rich habitat on the Oman margin. In: Hawkins L, Hutchinson S, Jenson A, Williams J, Sheader M (eds) Responses of marine organisms to their environment. 30th Eur Mar Biol Symp. Southampton Oceanography Centre, Southampton, p 223–230
- Levin LA, Gage JD, Martin C, Lamont PA (2000) Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep-Sea Res II: 47: 189–226
- Lissner A, Diener D, Kanter R (1988) Biological reconnaissance of selected benthic habitats within three California OCS planning areas. Data report, November 1988. SAIC and MEC Analytical Systems, Inc, MMS contract no. 14-12-0001-30388
- MacDonald IR, Guinasso J, Reilly JF, Brooks JM, Callender WR, Gabrielle SG (1990) Gulf of Mexico hydrocarbon seep communities: VI. Patterns of community structure and habitat. Geo-Mar Lett 10:244–252
- Masuzawa T, Kitagawa H, Kusakabe M (1992) Sulfate reduction using methane in sediments beneath a bathyal cold seep giant clam community off Hatsushima Island, Sagami Bay, Japan. Earth Planet Sci Lett 110:39–50
- McAleece N, Lambshead J, Paterson G, Gage J, Harris P, Lamont P (1997) BioDiversity Pro. The Natural History Museum and the Scottish Association For Marine Science, London
- McCall PL, Tevesz MJS (1982) Animal-sediment relations. The biogenic alteration of sediments. Plenum Press, New York
- Miura T, Hashimoto J (1991) *Nicomache ohtai*, new species (Polychaeta: Maldanidae) collected from the Hatsushima Cold-Seep in Sagami Bay. Proc Biol Soc Wash 104: 159–165
- Montagna PA, Bauer JE, Hardin D, Spies RB (1989) Vertical distribution of microbial and meiofaunal populations in sediments of a natural coastal hydrocarbon seep. J Mar Res 47:657–680
- Olu K, Duperret A, Sibuet M, Foucher JP, Fiala-Medioni A (1996a) Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns. Mar Ecol Prog Ser 132:109–125
- Olu K, Sibuet M, Harmegnies F, Foucher JP, Fiala-Medioni A (1996b) Spatial distribution of diverse cold seep communities living on various diapiric structures of the southern Barbados prism. Prog Oceanogr 38:347–376
- Olu K, Lance S, Sibuet M, Henry P, Fiala-Medioni A, Dinet A (1997) Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados Accretionary Prism. Deep-Sea Res 44:811–841
- Orange DL (1997) Active and episodic fluid flow on the southern Cascadia continental shelf and slope. EOS Transactions, AGU 78(46):F667
- Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Neumann C, Corso WP, Golubic S, Hook JE, Sikes E, Curray J

(1984) Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226:965–967

- Paull CK, Jull AJT, Tolin LJ, Linick T (1985) Stable isotope evidence for chemoautotrophy in an abyssal seep community. Nature 317:709–711
- Petrecca RF, Grassle JF (1987) Notes on fauna from several deep-sea hydrothermal vent and cold seep soft-sediment communities. In: McMurray GR (ed) Gorda Ridge, a seafloor spreading center in the United States' exclusive economic zone. Springer-Verlag, New York, p 279–283
- Powell EN, Bright TJ (1981) A thiobios does exist—Gnathostomulid domination of the canyon community at the East Flower Garden Brine Seep. Int Rev Ges Hydrobiol 66: 675–683
- Powell EN, Bright TJ, Woods A, Gittings S (1983) Meiofauna and the thiobios in the East Flower Garden Brine Seep. Mar Biol 73:269–283
- Rathburn AE, Levin LA, Held Z, Lohmann KC (2000) Benthic foraminifera associated with cold methane seeps on the northern California margin: ecology and stable isotopic composition. Mar Micropaleontol 38:247–266
- Schmaljohann R, Faber E, Whiticar MJ, Dando PR (1990) Coexistence of methane- and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak. Mar Ecol Prog Ser 61:119–124
- Sen Gupta BK, Aharon P (1994) Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico: initial report on communities and stable isotopes. Geo Mar Lett 14:88–96
- Shirayama Y, Ohta S (1990) Meiofauna in a cold-seep community off Hatsushima, central Japan. J Oceanogr Soc Jpn 46:118–124
- Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res II 45:517–567
- Sibuet M, Juniper SK, Pautot G (1988) Cold-seep benthic communities in the Japan subduction zones: geological control of community development. J Mar Res v.46, n.2, 1988:333–348
- Smith CR, Maybaum HL, Baco AR, Pope RH, Carpenter SD, Yager PL, Macko SA, Deming JW (1998) Sediment community structure around a whale skeleton in the deep Northeast Pacific: macrofaunal, microbial and bioturbation effects. Deep-Sea Res II 45:335–364

Editorial responsibility: Otto Kinne (Editor), Oldendorf/Luhe, Germany

- Stockton WL, DeLaca TE (1982) Food falls in the deep sea: occurrence, quality, and significance. Deep-Sea Res 29: 157–169
- Suess E, Whiticar MJ (1989) Methane-derived CO₂ in pore water fluids expelled from the Oregon subduction zone. Palaeogeogr Palaeoclimatol Palaeoecol 71:119–136
- Suess E, Bohrman G, von Huene R, Linke P, Wallmann K, Lammers S, Sahling H (1998) Fluid venting in the eastern Aleutian subduction zone. J Geophys Res 103:2597–2614
- Thiermann F, Windoffer R, Giere O (1994) Selected meiofauna around shallow water hydrothermal vents off Milos (Greece): ecological and ultrastructural aspects. Vie Milieu 44:215–226
- Thiermann F, Akoumianaki I, Huges J, Giere O (1997) Benthic fauna of a shallow-water gaseohydrothermal vent area in the Aegean Sea (Milos, Greece). Mar Biol 128:149–159
- Tsutsumi H, Wainright S, Montani S, Saga M, Ichihara S (1997) Hydrogen sulfide promotes growth of the polychaete, *Capitella* sp. I. Benthic Ecology Meeting. March 1997. Rutgers, NJ (Abstract)
- Van Dover CL, Fry B (1989) Stable isotopic compositions of hydrothermal vent organisms. Mar Biol 102:257–263
- Vanreusel A, Van den Bossche I, Thiermann F (1997) Freeliving marine nematodes from hydrothermal sediments: similarities with communities from diverse reduced habitats. Mar Ecol Prog Ser 157:207–219
- Vetter EW, Dayton PK (1998) Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep-Sea Res II 45:25–54
- Wade TL, Kennicutt MC, Brooks JM (1989) Gulf of Mexico hydrocarbon seep communities: Part III. Aromatic hydrocarbon concentrations in organisms, sediments and water. Mar Environ Res 27:19–30
- Yun JW, Orange DL, Field ME (1999) Subsurface gas offshore of northern California and its link to submarine geomorphology. Mar Geol 154:357–368
- Zuleger E, Gieskes JM, You CF (1995) Sediment cores on the Costa Rica Accretionary Prism (Atlantis II Cruise 131-10): pore water studies. Scripps Inst Oceanogr Ref Ser 95-4: p 75
- Zuleger E, Gieskes JM, You CF (1996) Interstitial water chemistry of sediments of the Costa Rica accretionary complex off the Nicoya Peninsula. Geophys Res Lett 23:899–902

Submitted: January 14, 2000; Accepted: October 13, 2000 Proofs received from author(s): November 29, 2000