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Abstract

Oxygen minimum zones are expected to alter substantially the nature, rates and depths of
bioturbation along continental margins, yet these effects remain poorly studied. Using excess
210Pb profiles, sediment X-radiography and box-core samples for macrofauna, we examined
bioturbation processes at six stations (400, 700, 850, 1000, 1250 and 3400 m deep) along
a transect across the oxygen minimum zone (OMZ) on the Oman margin. Bottom-water
oxygen concentrations ranged from ~ 0.13ml1" ' at400mto ~ 2.99 ml1~* at 3400 m. 2'°Pb
mixed-layer depth and bioturbation intensity (D,) exhibited high within-station variance, and
means did not differ significantly among stations. However, the mean mixed-layer depth
(4.6 cm) for pooled OMZ stations (400-1000 m depths, 0.13-0.27 ml 1~* bottom-water oxygen)
was half that for stations from similar water depths along well-oxygenated Atlantic and Pacific
slopes (11.1 cm), suggesting that oxygen stress reduced *!°Pb mixing depth on the Oman
margin. Modal burrow diameter and the diversity of burrow types at a station were highly
correlated with bottom-water oxygen concentration from the edge to the core of the Oman
OMZ (Spearman’s rho > 0.89, p < 0.02), suggesting that these parameters are useful proxies for
bottom-water oxygen concentrations under dysaerobic conditions. In contrast, neither the
maximum diameter and nor the maximum penetration depth of open burrows exhibited
oxygen-related patterns along the transect. Reduced 2'°Pb mixing depth within the Oman-
margin OMZ appeared to result from a predominance of surface-deposit feeders and tube
builders within this zone, rather than from simple changes in horizontal or vertical distributions
of macrofaunal abundance or biomass. The number of burrow types per station was highly
correlated with macrofaunal species diversity, suggesting that burrow diversity may be a good
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proxy for species diversity in paleo-dysaerobic assemblages. We conclude that bottom-water
oxygen concentrations of 0.13-0.27 m11~! substantially alter a number of bioturbation para-
meters of importance to diagenetic and biofacies models for continental margins. © 1999
Elsevier Science Ltd. All rights reserved.

1. Introduction

Bioturbation, or the displacement of sediment particles by animals, results from
feeding, burrowing and habitat construction by benthos (e.g., Wheatcroft et al., 1990).
These bioturbation activities have many direct and indirect effects on seafloor sedi-
ments. Simple nonselective biogenic movement of particles within the sediment
column, such as may result from burrowing, alters particle exposure to fluid shear
stress, redox conditions, and microbial metabolism, thus influencing chemical reac-
tion rates and burial efficiency (e.g., Aller, 1982; Jumars and Nowell, 1984; Wheatcroft
et al., 1990). Deposit feeding frequently alters particle composition, in situ grain size
and sediment erodability (e.g., Jumars and Nowell, 1984), and can yield selective rapid
subduction and/or mixing of organic-rich phytodetritus (e.g., Graf, 1989; Smith et al.,
1993,1996,2000; Levin et al., 1997). Thus, the intensity and depth of bioturbation can
dramatically influence the rates and depths of organic-carbon degradation (e.g.,
Emerson, 1985; Rabouille and Gaillard, 1991; Hammond et al., 1996) and silica
dissolution (Schink et al., 1975), and the proportion of sedimenting organic carbon,
pollutants, and other redox-sensitive species sequestered within the seafloor (e.g.,
Emerson, 1985; Rabouille and Gaillard, 1991; Kramer et al., 1991; Aller, 1990). In
addition, bioturbation smears the sediment record, complicating the reconstruction of
pollution histories and paleoclimates from deposited tracers (e.g., Wheatcroft, 1990;
Savrda and Bottjer, 1991; Kramer et al., 1991).

These bioturbation processes are expected to change substantially with declining
bottom-water oxygen as benthic communities become oxygen stressed (e.g., Pearson
and Rosenberg, 1978; Rhoads et al., 1978; Diaz and Rosenberg, 1995). However, we
presently have limited understanding of the influence of oxygen gradients on biotur-
bation along continental margins. Most information concerning oxygen-bioturbation
relationships along margins comes from ichnological studies, in which the effects of
bioturbation on sedimentary fabric have been used to reconstruct paleo-oxygenation
histories of marine systems. In particular, characteristic assemblages of trace fossils,
body fossils and sediment laminations, called “biofacies”, have been used to infer
relative levels and rates of change of bottom-water oxygenation (e.g., Savrda and
Bottjer, 1991). These biofacies models predict a decrease in the size, abundance,
diversity and penetration depth of infaunal traces, as well as an increasing occurrence
of primary laminations, as bottom-water oxygen decreases below a threshold level
(e.g., Savrda and Bottjer, 1991). A shift in infaunal lifestyles between subsurface-
feeding and surficial-sediment-grazing assemblages (i.e., between formers of fodinich-
nia and pascichnia) also has been predicted, although the direction of this change as
oxygen decreases is controversial (Ekdale and Mason, 1988,1989; Wheatcroft, 1989).
Recent recognition that oxygen stress may yield subtle gradations in community
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structure has led to the delineation of five oxygen-related biofacies characterized by
decreasing intensities and depths of bioturbation: aerobic, dysaerobic, exaerobic,
quasi-anaerobic and anaerobic (Savrda and Bottjer, 1991). The bottom-water oxygen
concentrations thought to bound these biofacies are only roughly characterized (see
Table 7 in Levin et al., 2000), with the initiation of oxygen effects on bioturbation (i.e.,
the aerobic/dysaerobic boundary) thought to occur between 0.3 and 1.0 ml 1~ 1, This
biofacies model is based largely on studies along the California, USA, margin and
requires validation in other oceanographic settings. The sharp gradients in bottom-
water oxygen concentration observed at the boundaries of oxygen-minimum zones
(OMZs) on some continental margins, such as in the Arabian Sea, provide excellent
opportunities to evaluate the relationships between oxygen concentrations and
bioturbation processes, and to test biofacies models.

Steep oxygen gradients occurring at the upper and lower boundaries of OMZs
often appear to support enhanced biological activity, both in the water column (e.g.,
Karl and Knauer, 1984; Lipschultz et al., 1990; Wishner et al., 1990,1995) and in the
benthos (Mullins et al., 1985; Thompson et al., 1985; Levin et al., 1991). Possible
explanations include (1) elevated microbial metabolism and production, both aerobic
and anaerobic, due to oxidation of accumulated reduced compounds, and (2) elevated
densities of animals able to exploit acrobically high food availability just above their
O,-tolerance threshold (Levin et al., 1991). A dramatic shift from minimal to extensive
bioturbation might thus be expected across OMZ boundaries. The relationships
between oxygen concentration and animal body size, density, feeding habits and
depth distributions appear likely to determine the extent of this change.

In this paper, we examine patterns of bioturbation along a transect across the OMZ

boundary on the Oman margin in the Arabian Sea (Fig. 1). In our study area,
bottom-water oxygen concentrations drop abruptly from 3 to ~ 0.1 ml1~! at a water
depth of ~ 100 m, rise gradually to 1ml1~! at ~ 1500 m, and once again reach
~3mll™ ! below water depths of 3000 m (Fig. 2). Based on biofacies models and
studies of faunal changes across OMZs (Levin et al., 1991,2000; Wishner et al.,
1990,1995), we consider the OMZ boundary to fall at oxygen levels between 0.3 and
1.0 ml 17, Our transect ranges from ~ 400 to ~ 3400 m depth, i.e. from the core of
the OMZ, across its lower boundary and into well-oxygenated abyssal waters.

Here we use excess 21°Pb profiles, sediment X-radiography, and box-core samples
of macrofauna to test the following hypotheses derived from biofacies models and
previous OMZ studies.

(1) The intensity of mixing, as measured by the eddy diffusion coefficient Dy, and the
mixed layer depth for excess *!°Pb are maximal at the OMZ boundary and
decline into the OMZ.

(2) The diameter (maximum and modal), diversity and penetration depth of open
animal burrows are positively correlated with bottom-water oxygen concentra-
tion from the boundary to the core of the OMZ.

(3) The above changes in bioturbation are correlated with a shoaling in the depth
distribution of macrofauna, decreases in macrofaunal community abundance and
biomass, and a shift to surface-oriented life-styles near the OMZ core.
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Fig. 1. Area studied for this paper during Discovery Cruise 211 on the Oman Margin.

We find that certain parameters, e.g., modal burrow size and diversity, show
significant changes across the OMZ while other parameters, in particular mixing
intensity of 2'°Pb, exhibit little correlation to changes in bottom-water oxygen
concentrations.

2. Study site and methods

2.1. Study site

Data were collected along the Oman Margin in the northwest Arabian Sea (roughly
19°21' N, 48°15'E) during October and November 1994 on the RRS Discovery Cruise
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Fig. 2. Composite profile of oxygen from Discovery Cruises 210 and 212 used for this study (see text for
explanation). The curve shown is a second-order polynomial fitted to the data between 250 and 1500
m depths, and used to provide the best estimate for oxygen values at our 400-1250-m stations. The equation
for the curve is: oxygen concentration = 0.05919(depth)®!3!2 + (4.864 x 10~ *(depth)*-8°4, with r? =
0.9104. Points marked by triangles are from Discovery 210 (Sept. 94) and diamonds are from Discovery 212
(Nov. 94).

211. A total of six stations were studied at waters depths of approximately 400, 700,
850, 1000, 1250 and 3400 m (Table 1). The physical characteristics of these stations are
presented in Table 2. Based on our best and minimum estimates of bottom-water
oxygen concentrations, our 400-700 m stations fall within the OMZ, the 1250-m
station is at its boundary, and the 3400-m station is well below the OMZ.

Bottom-water oxygen data for our stations were obtained as follows. Measure-
ments made during Discovery Cruise 211 from multiple-core topwater and Niskin
bottles appeared to be faulty (variance was inordinately high), possibly due to sampler
leakage or heat-spoiled reagents. We thus used bottom-water oxygen data collected
from hydrocasts during Discovery Cruises 210 and 212 (in September and November,
respectively) to the Oman margin (Burkill, 1998). Winkler titration data from three
stations within 9 km of our margin transect (stations AS 1 at 19°15.0'N, 58°35.4'E, AS
2 at 19°16.5'N, 58°32.2'E and AS 3 at 19°13.3'N, 58°20.6'E) were used to estimate
oxygen values at our stations from 400 and 1250 m depths. One cast from each of
these stations was obtained in both Sept. and Nov. 1994, yielding the data from 250 to
1800 m in Fig. 2. We fitted a second-order polynomial to these data between 250 and
1500 m to obtain the best estimate of bottom-water oxygen concentrations at our
station depths of 400, 700, 850, 1000 and 1250 m (Table 1). For depths below 1800 m,
oxygen concentrations were taken directly from measurements made during four
hydrocasts at station Al (depth = 3397 m, 19°00.0'N, 59°00.0'E), which is a few
kilometers from our abyssal station; two casts were made at station Al in Sept. and
two in Nov. 1994. We believe it is appropriate to use oxygen data integrating
month-long time scales because we expect macrofauna and bioturbation processes to
respond either to mean or minimum bottom-water oxygen concentrations over time
scales of weeks to months.
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Table 1

Samples collected for this study. All samples were collected between 9 October and 11 November.
MC = multiple core, Veg = vegematic subcore, BC = box core, XR = x-ray, MF = macrofauna,
PB = 2!°Pb profile.

Nominal Sample no. Sample Latitude °N Logitude °E Data type
station water
depth (m) depth (m)
400 12690/1 377 MC, PB
12692/4 398 19°22 58°15' BC, XR
12698/1 401 19°21.78' 58°15.49’ BC, MF
12695/4 406 19°21.92 58°15.49' BC, MF
12695 412 19°22' 58°15 MC, PB
12695/7 414 19°21.83' 58°15.42 BC, MF, XR
12690/3 418 19°22.00 58°15.46' BC, MF, XR
700 12685 667 19°18’ 5817 MC, PB
12685/1 674 19°18.95 58°15.53' BC, MF
12682/2 685 19°19’ 58°16' MC, PB
12685/8 690 19°18.66 58°15.64' BC, MF, XR
12685/6 700 19°18.88’ 58°15.46' BC, MF, XR
12682/3-2 742 19°18’ 58°17 MC, PB
12683/3-7 742 19°18 5817 MC, PB
12685/10 746 19°18.72 58°15.79' BC, XR
850 12713 823 19°14 5823 MC, PB
12711 833 19°14 58723 MC, PB
127112 840 19°14.21 58°23.11 BC, MF, XR
127131 850 19°14.35 58°23.16' BC, MF, XR
12713/5 854 19°14.14 58°23.01 BC, MF
12713/4 862 19°14.16 58°23.13 BC, MF, XR
12715/1 874 19°14.60 5872297 BC, MF, XR
1000 12722/4 963 19°16.28' 5829.25' BC, MF
12722 972 19°16' 58°29' MC, PB
12718 981 19°16' 58°29 MC, PB
12718/4 982 19°16.87 58°29.81 BC, MF, XR
12718/1 983 19°16 58729’ MC, PB
12718)2 992 19°16.62 58°29.77 BC, MF, XR
12722/1 992 19°16.09 58729.68' BC, MF, XR
12716/2 996 19°16.05 58°29.08' BC, MF, XR
1250 12725/6 1244 19°14.31 5829.25' BC, MF
12723 1252 19°14' 58°29 MC, PB
127252 1265 19°14.03’ 5829.29' BC, MF, XR
127232 1285 19°14.02 58°29.42' BC, MF, XR
12723/4 1291 19°14.25 58729.55' BC, MF, XR
12725 1296 19°14' 58°29' MC, PB
12725/4 1310 19°13.91 58°31.63 BC, MF, XR
3400 12687/4 3360 18°59.84 59°00.96' BC, MF, XR
12687/1 3372 18°59.51 59°00.76' BC, MF
12688/1 3384 19°00 59°01 BC, XR

12671/4 3392 19°00.29" 59°00.22' BC, MF, XR
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Table 1 (continued)

Nominal Sample no. Sample Latitude °N Logitude °E Data type
station water
depth (m) depth (m)
12671 3392 19°00 59°01’ MC, PB
12687/9 3392 18°59.77 59°00.49’ BC, MF
12687 3393 19°00 59°01’ MC, PB
12730/1 3400 18°00.72 59°59.41 BC, MF
2.2. Methods

Excess *'°Pb profiles were measured from 5.7-cm diameter tube cores collected
with a multiple corer similar to that described by Barnett et al. (1984). Station data are
presented in Table 1. Once on shipboard, multiple-core tubes were extruded and
sectioned at 1-cm intervals to a depth of 10 cm, and then at 2-cm intervals to the
bottom of the core, using the methods of Pope et al. (1996). In particular, to avoid
contamination from downcore smearing during the extrusion process, the outer
~ 5-mm thick “rind” of each sediment interval was carefully cut away and discarded.
Equivalent depth intervals from two core tubes from each lowering were then
combined to yield adequate sample mass, and then double sealed in ziplock bags. In
the laboratory, uranium-series activities were determined by non-destructive gamma
spectrometry using an extended-range, coaxial, high-purity Ge detector (EG&G
Ortec Gamma-X) with spectrum acquisition on a PC-based 4096-channel multichan-
nel analyzer. Sediment samples were analyzed wet, sealed in counting vials, and
incubated for at least 24 days to assure secular equilibrium of the short-lived daugh-
ters of *2°Ra. Subsequent to counting, the samples were oven-dried at 110°C for at
least 48 h to obtain constant dry weights and sample porosities. Samples were
corrected for counting vial geometry and for self-absorption of !°Pb after methods
previously described (Kim and Burnett, 1983; Kim and McMurtry, 1991). Spectral
data were subsequently manipulated by computer and the reported net specific
activities, normalized to NBS and EPA standards, decay-corrected to the date of
sample collection. Excess 2'°Pb activities are reported as the difference between total
210Ph and 22°Ra activities.

In general, depth intervals were assayed for excess >'°Pb activity in the order 0-1,
1-2, 2-3, 4-5, 6-7, 10-12, 14-16 cm until two successive intervals yielded zero excess
activity. In some cases, additional or alternative intervals were measured to elucidate
irregularities in profiles. Two to four 21°Pb profiles were measured from each station.

To evaluate mixed-layer depths and D, from *'°Pb profiles, log-linear plots of
excess 2!°Pb profiles were examined (Fig. 3). The 2'°Pb mixed-layer depth was taken
to be the depth at which a major decrease (i.e. break) in the slope of the profile was
evident; in two samples (nos. 12695/2 and 12682/3-7), subsurface maxima made
selection of this break point problematic. We used a similar approach to evaluate
mixed-layer depths for published excess >!°Pb profiles from well-oxygenated slopes to
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allow comparison to our Arabian Sea estimates. For the Arabian Sea cores, an eddy
diffusive bioturbation coefficient was then estimated for the surface mixed layer (i.e.,
the profile points above and including the break point) using least-squares regression
as in Smith et al. (1993). This model assumes (1) steady state, (2) constant porosity and
eddy diffusivity within the mixed layer, and (3) that eddy diffusion controls the shape
of the excess 2!°Pb profile within the mixed-layer, i.e., that the bioturbation Peclet
number is very small (Smith et al., 1993). For excess 2!°Pb profiles exhibiting
a well-defined mixed layer, we estimated a maximum sedimentation rate (S,,,,) from
the non-zero points below the mixed layer, using least-squares regression and the
constant activity model of Nittrouer et al. (1983/84). The sedimentation-rate estimates
are upper limits because X-radiography and faunal samples suggested that some
bioturbation was still occurring below the mixed-layer depths. Mean Peclet numbers
(i.e., [mixed layer depth] x [sedimentation rate]/[ Dy ]) for the mixed layer were < 0.4
at five of our six stations; at 1000 m, a sedimentation rate could not be estimated, so
we could not calculate a Peclet number.

The diameter, diversity and penetration depth of open burrows were evaluated
from X-radiographs of slab cores (2.5 x 10 x ~ 15 cm) taken from 3 or 4 box cores
from each station (Table 1). Rectangular plexiglas slab cores were either mounted
inside the box corer during in situ sampling or inserted into the box core immediately
after recovery. Within 1 h after box-core recovery, slab cores were X-rayed with
a portable X-ray machine to produce a 1/1 image, and the film then developed on
shipboard. In the laboratory, processed X-ray films were examined with a 4X hand
lens on a light table. The diameters of the largest open burrow and the most common
burrow size (i.e., modal burrow diameter), and the maximum penetration depth of an
open burrow below the sediment-water interface were measured for each X-radio-
graph with a millimeter-scaled ruler; burrow diameters were measured to an accuracy
of 0.5mm, and burrow depths to an accuracy of ~ 0.5-2cm depending on the
irregularity of the sediment-water interface. In addition, the number of distinct types
of open burrows was counted for each core, and the presence of primary laminations
and any unusual features noted.

Macrofauna ( > 300-um) were sampled from each of the six stations with a 0.25-m?
USNEL-type box corer containing vegematic subcorers (9.6 x 9.6 cm) (Table 1). Sub-
cores were either sectioned vertically at intervals of 0-1, 1-2, 2-5, 5-10, and 15-20 cm,
or were sampled from 0-20 cm. Three to five box cores were collected at each station,
with two to four subcores examined from each box core. Estimates of total biomass
and density for each station are based on both sets of subcores (66 in total), while
vertical patterns were evaluated only from the first, horizontally sectioned set (41
subcores). On board ship, samples were preserved unsieved (0-2 cm intervals), after
washing on 63-um sieve (2-5 cm intervals), or after washing on a 300-um sieve (5-15,
15-30, or 0-20 cm intervals), in an 8% buffered formalin/seawater solution. Samples
were re-sieved in the laboratory, and the animals retained on a 300-pm mesh picked,
identified to lowest possible taxon, and weighed wet. Our analyses do not include the
traditional “meiofaunal” taxa such as nematodes, copepods, ostracods and foraminif-
era. For more details of macrofaunal sampling and processing, see Levin et al. (2000).
Abundance, biomass and vertical distribution data for the macrofauna were
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calculated for each station by first averaging subcores within each box core, and then
averaging box-core data within a station.

Differences among stations along the Arabian Sea transect were analyzed by
ANOVA with the Tukey HSD test using JMP or Unistat software, unless a Bartlett-
Box F-test indicated significant inhomogeneity of variances. For heteroscedastic data
sets, differences among stations were analyzed using the Kruskal-Wallis test with
Unistat software. Percentage data were arcsine transformed prior to analysis to normal-
ize distributions. Differences between means for oxygenated slopes versus the Arabian
Sea OMZ were evaluated with the ¢ test (Dixon and Massey, 1969). Because data sets
were not expected to be normally distributed, correlation analyses were conducted
using the non-parametric Spearman’s rho with Unistat software. Exploratory least-
squares regressions were conducted using JMP software on log; o-transformed data. An
o level of 0.05 was used throughout as the criterion for statistical significance.

3. Results
3.1. Depth and intensity of *'°Pb mixing

Excess *!°Pb profiles for each station are shown in Fig. 3. Mean *!°Pb mixed-layer
depth varied more than two-fold between stations, but these between-station differ-
ences were not statistically significant (Fig. 4, Tables 3 and 4). Lack of statistical
significance could have been due to f§ error resulting from the small number of profiles
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Fig. 4. (A) Mean 2'°Pb mixed-layer depth and (B) mean 2'°Pb bioturbation coefficient (D) versus depth
along the Oman margin. Error bars are + one standard error.



C.R. Smith et al. | Deep-Sea Research I 47 (2000) 227-257 239

Table 3
Average mixed-layer depths, bioturbation coefficients within the mixed layer (Dy), and maximum sedi-
mentation rates (Spay) from below the mixed layer for excess 2!°Pb profiles along our transect

Station Mean mixed Standard Mean D, Standard Mean Standard
(m) layer depth error (em?y~ 1 error Smax error (n)
(m) (n) () (emy™")

400 3.0 0.5(2) 2.9 o(1)* 0.05 2)

700 3.0 0.3(4) 0.41 0.03(3) 0.04 (2)

850 7.0 0.5(2) 0.79 0.03(2) 0.05 0(1)
1000 6.1 1.2(3) 0.15 0.07(3) b
1250 6.5 4.2(2) 40 40(2) 0.06 0(1
3400 2.5 0(2) 0.31 o(1)* 0.06 0(1)

*One profile from this station exhibited subsurface peaks suggesting non-local and/or non-steady state
mixing; no D, was calculated for this profile.
® The mixed layer depth at this station was too deep to allow estimation of Spa,.

Table 4

Results of analyses of among-station differences using one-way ANOVA or the Kruskal-Wallis test
Variable Test P level Significant station differences
210ph Mixed layer depth Kruskal-Wallis 0.14 —

210pp D, Kruskal-Wallis 0.12 —

Maximum burrow diameter ANOVA 0.05* 1000 m < 1250 m

Modal burrow diameter Kruskal-Wallis 0.02*

Number of burrow types per core ANOVA 0.0004° 1000 m < 1250 m,

1000 m < 3400 m,
400 m < 1250 m

Maximum burrow penetration depth ANOVA 0.37 —
Macrofaunal abundance below 5 cm ANOVA 0.0001° 850, 1000, 1250, and

3400 m < 700 and 400 m
Macrofaunal biomass below 5 cm ANOVA 0.002° All other stations < 700 m

*Significant at o = 0.05.
®Significant at o = 0.005.

per station (in many cases two). Even if we ignore the lack of statistical significance,
the mixed-layer depth pattern was not as predicted; the highest thickness was well
within the OMZ at 850 m, rather than at the boundary station at 1250 m, and there is
no clear monotonic trend of decreasing mixed-layer thickness with distance into the
OMZ. Nonetheless, mixed-layer thickness from the boundary to the core of the OMZ
(400-1250 m) was moderately (although not significantly) correlated with oxygen
concentration (Spearman rho = 0.667, p > 0.1), suggesting that between O, concen-
trations of 0.1 and 0.5mll1™!, bottom-water oxygen may exert some control on
mixed-layer depth on the Arabian slope. Once again, the weakness of this pattern
could well be due to the small number of data points (n = 5).

Bioturbation intensities (i.e., Dy, ) for >!°Pb within the surface mixed layer also failed
to exhibit any strong patterns on the Oman slope (Table 3; Fig. 4). Mixing intensities
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were not significantly different among stations (Table 4) nor were they positively
correlated as predicted with bottom-water oxygen concentration from the boundary
to the core of the OMZ (for the 400 to 1250-m stations, Spearman rho = 0.100,
p > 0.4). While the highest individual D, value was recorded from the OMZ boundary
at 1250 m, high within-station variability in D, suggests that substantially larger
sample sizes would be required to elucidate any statistically significant patterns, such
as enhanced Dy, at 1250 m.

To explore further the effects of low oxygen on bioturbation, we compared the
mean mixed-layer depth and bioturbation intensity for ' °Pb from within the Oman-
slope OMZ to those of stations from similar depths along better oxygenated slopes in
the Atlantic and Pacific Oceans (Table 5). The pooling of our OMZ stations in this
comparison provided substantially more statistical power than we could obtain
within the Arabian-Sea transect alone. The mean 2'°Pb mixed-layer depth for the
oxygenated slopes (mean = 11.1 cm, s.e. = 0.5 cm) was twice that of the Oman slope
OMZ (mean = 4.6 cm, s.e. = 0.2 cm), and this difference was statistically significant
(Table 5). In contrast, the mean mixing intensities within the mixed layer were similar
for the oxygenated-slope and Oman-slope OMZ data (0.90 and 1.1, respectively,
s.e. > 0.32 cm; Table 5). These results suggest that bottom-water oxygen levels
between ~ 0.1 and ~ 0.3 ml1~! on the Oman slope yield a decrease in the thickness
of the mixed layer, but had no clear impact on the intensity of mixing within this layer.

3.2. X-radiographic analyses

Brief descriptions of X-radiographs from each core are presented in Table 6, and
representative X-radiographs are presented in Fig. 5. Sediments from the 400-m
station were characterized by fine vertical burrows in the top 2-3 cm, as well as faint
centimeter-scale laminations within this zone; below ~ 3 cm, sediments were quite
homogeneous. Sediments from the 700-m station contained larger, vertical tubes
within the top 3-7 cm; many of these were ampeliscid amphipod tubes that protruded
through the sediment-water interface. Above a sediment depth of 4-8 cm, the only
visible structure was biogenic, while at depths greater than 4-8 cm, sediments often
increased abruptly in density and exhibited no bioturbation; this density shift corre-
sponded roughly to the mixed-layer depth for ?!°Pb profiles from this station (Fig. 3).
At the 850-m station, the top 2-4 cm of sediment were riddled with burrows yielding
a very low-density layer; numerous cirratulid mudballs protruded above the mean
sediment-water interface. Below 4 cm, sediment density increased but remained
heavily bioturbated. Sediments at the 1000-m station appeared to be denser than at
shallower stations and relatively homogenous throughout the top 10 cm, with numer-
ous hair-like burrows, and an occasional large maldanid-polychaete burrow complex
(Fig. 5). One X-radiograph exhibited faint lamination in the top centimeter of
sediment. At 1250 m, sediments were quite homogenous, with numerous burrows of
a variety of types and sizes penetrating 4-13 cm below the sediment-water interface.
At 3400 m, sediments were relatively low in density and riddled with open burrows
to 4-7cm depths; two cores exhibited laminations at 12-14 cm suggestive of a
turbidite.
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Maximum burrow diameter, modal burrow diameter, and burrow diversity all
varied along the Oman-slope transect (Table 4). However, the only significant differ-
ence in maximum burrow diameter occurred between the 1000 and 1250-m stations,
with diameter greater at 1250 m (Table 4). Maximum burrow diameter was not
significantly correlated with bottom-water oxygen concentration (Spearman
rho = 0.3, p > 0.30). Modal burrow diameter and the number of burrow types per
core (or local burrow diversity) exhibited more orderly patterns, generally increasing
from the center to the edge of the OMZ (i.e., from 400 to 1250 m, Fig. 6). In addition,
both modal burrow diameter and total number of burrow types per station
(Table 7; Fig. 7) exhibited significant positive correlation with bottom-water oxygen
concentrations from 400 to 1250 m (Spearman rho’s of 0.90 and 0.89, respectively,
with p levels < 0.02). Neither maximum nor modal penetration depths of
burrows exhibited significant pattern with depth or oxygen concentration along our
transect.

3.3. Macrofaunal patterns

As described in detail in Levin et al. (2000), macrofaunal densities and biomass
varied among stations. Total macrofaunal densities were highest at 700 and 850 m
(19,000 and 17,000 m ~ ?), respectively, intermediate at the 400-m station (12,000 m ~?),
and lowest at 1000, 1250 and 3400 m (3000-8000 m ~ 2). Biomass was highest at 700 m
(59 gm~?) and differed significantly from the 400, 1250 and 3400 m stations
(4.2-14 gm™?).

The vertical distributions of macrofaunal abundance (Fig. 8) and biomass
(Fig. 9) within the sediment column also varied among stations. The 400 and 700 m
stations had a significantly greater number of individuals collected below 5 cm,
while the 700 m station had significantly higher biomass below 5 cm than all other
stations (Table 4). Contrary to the expectation that deeper faunal penetration would
promote deeper mixing, these were the stations with the shallowest 2*°Pb mixed-layer
depths.

The proportional representation of macrofauna in different depth fractions (nor-
malized to the total within each core) revealed somewhat different patterns. The
proportion of individuals below 5 cm at the 3400, 400 and 1250 m stations (0.12-0.29)
was dramatically higher than at 1000 m (0.01). The proportion of individuals dwelling
below 10 cm was higher at 3400 m (0.12) than at all other stations (0-0.02). The
proportional distribution of biomass exhibited little pattern; only biomass below 5 cm
at 850 m (0.40) substantially exceeded that at 1000 m (0.07).

Life styles of macrofauna shifted substantially across the transect. Within the OMZ
(400-1000 m stations), tube dwellers, including spionid, ampharetid, sabellid and
some cirratulid polychaetes, as well as cocoon-forming mussels, constituted > 50% of
the macrofauna. In contrast, at the OMZ boundary and in the abyss (the 1250 and
3400-m stations), tube dwellers constituted < 32% of the fauna.

Feeding modes of polychaetes (the predominant macrofaunal taxon) also shifted
substantially along the Oman margin transect. Surface-deposit feeding poly-
chaetes dominated macrofaunal assemblages within the OMZ, constituting > 85% of
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abundance. At the 400-700 m stations spionids and cirratulids were the predominant
surface deposit feeders, while paranoids and ampharetids dominated at 850-1000 m.
At the OMZ boundary and abyssal stations, subsurface-deposit feeders plus
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1250 m

Fig. 5 (continued)

carnivores where roughly equivalent in importance to surface-deposit feeding poly-
chaetes, constituting on average > 45% of the macrofauna. For more details con-
cerning life styles and feeding modes, see Levin et al. (2000).

A
<

Fig. 5. Representative X-radiographs from box cores collected at our Oman-margin stations at 400, 700,
850, 1000, 1250 and 3400 m. The scale is identical for all X-radiographs (note scale bar on 400-m plate). For
detailed description of X-rays, see Table 6. 400 m (sample no. 12692/4): Centimeter-scale laminations in the
top 2 cm with (arrows) a few very faint fine burrows (0.05 cm diameter) from 4 to 8 cm (e.g., in areas
indicated by B’s). 700 m (sample no. 12685/10): Numerous fine burrows in the top 5-6 cm, with many
(ampeliscid amphipod tubes, AT) ending in protuding tubes. Note the 0.5-cm diameter nearly horizontal
tube in the upper right (HT), and the dramatic shift in sediment density along an irregular horizon at 6-7 cm
depths (DS). 850 m (sample no. 12711/2): Very abundant millimeter-scale burrows in top 2-3 cm produce
a low-density layer (LDL). Note the cirratulid mudballs (CM) protruding ~ 1 cm above and below the
sediment-water interface (see Levin and Edesa, 1997 for a description), and the homogeneous nature of the
sediment. The dark, horizontal, centimeter-scale “parentheses” marks in the top 3-4 cm are the dorsal
surfaces of ampipods (AM). 1000 m (sample no. 12716/2): Relatively homogeneous sediment with very fine,
hairlike burrows in top 1-5cm, and a convolute maldanid burrow complex (MB) penetrating from the
sediment surface to 3.5 cm. 1250 m (sample no. 12723/4): Note the numerous hairlike burrows (HLB), and
the occasional conical vertical burrows (CV; probably from ampharetids) in the top 4 cm. Also note the
centimeter-scale helical burrow (HB) probably formed by a paranoid, and the relatively homogeneous
nature of the sediment. 3400 m (sample no. 12687/4): Numerous horizontal and vertical burrows ranging
from 0.1 to 0.5 cm in diameter throughout top six centimeters. Note the 1.5 cm long clam (CL) at the
sediment surface, and larger infilled centimeter-scale burrows at 8-11 cm (IB).
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Fig. 6. (A) Modal burrow diameter, and (B) mean number of burrow types per sample (diamonds) and
total number of burrow types at a station (squares) versus depth on the Oman slope. Error bars are + one
standard error.

3.4. Exploratory regressions

Least-squares regression analysis was used to explore relationships between biotur-
bation and the macrofaunal parameters described above. Specifically, relationships
were explored between (a) 2!°Pb D,, *!°Pb mixed-layer depth, maximum burrow
depth, maximum burrow diameter, and total number of burrow types per station, and
(b) macrofaunal abundance, biomass, average body size, abundance below 5 cm, and
average body size below 5 cm. In addition, relationships between total burrow types
per station and various macrofaunal indices of diversity (i.e., rarefaction diversity at
100 individuals or ES(100), and H" and J' on log,; Levin et al., 2000) were investigated.
Those regressions yielding p levels near or below 0.05 are listed in Table 8.

These analyses revealed little or no relationship between macrofaunal parameters
and *!'°Pb mixing intensity and mixed-layer depth; only the regression of Dy versus
biomass had a nearly significant p level (Table 8), with the direction of the relationship
unexpectedly negative. Also to our surprise, maximum burrow depth evident in
X-radiographs was negatively related to macrofaunal abundance and biomass.
More expectedly, the total number of burrow types within a station was strongly
positively related to all three macrofaunal diversity parameters (ES(100), H', and J');
total number of burrow types also was negatively correlated with macrofaunal
density.
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Table 8
Results from exploratory regression analyses on log;o-transformed data. Explanations for the calculation
of diversity (rarefaction at 100 individuals or ES(100), H', and J’ are given in Levin et al. (2000))

Dependent variable Independent variable r? p level Direction

Linear regressions

D, Macrofaunal biomass 0.63 0.06 Negative

Maximum burrow depth Macrofaunal biomass 0.592 0.073 Negative
Macrofaunal abundance 0.867 0.007 Negative

Total no. of burrow types Macrofaunal abundance 0.687 0.041 Negative

per station

ES(100) 0.807 0.015 Positive
H’ 0.754 0.025 Positive
y 0.749 0.026 Positive

Second-order polynomial regressions

Maximum burrow diameter Macrofaunal density 0.899 0.032 Concave
Average macrofaunal body size 0.875 0.044 Convex
Average macrofaunal body size 0.943 0.014 Convex

below 5 cm
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4. Discussion

We postulated (hypothesis no. 1) that *!°Pb mixed-layer depth and D, would be
maximal at the OMZ boundary (i.e., roughly at the 1250 m station), where bottom-
water oxygen concentration just exceeded the lower limits of burrowing and biotur-
bating fauna, and faunal densities were enhanced by organic matter sinking from the
OMZ. Although macrofaunal abundance maxima occurred at 700-850 m (i.e., at
bottom water oxygen values of ~ 0.16-0.20 ml1~ '), most of the animals at these
stations were surface feeders (Levin et al., 2000) and apparently did not produce
particularly intense vertical mixing. Subsurface-deposit feeders did become prominent
at 1250 m (oxygen ~ 0.5 ml1~1), but there was no clear enhancement of bioturbation
at this station either, possibly because macrofaunal standing crop was relatively low.
These bioturbation results contrast those of Mullins et al. (1985) from the northeast
Pacific slope, where there was evidence of enhanced bioturbation at the OMZ
boundary. Bioturbation activities near the lower OMZ boundary on the Oman slope
could be low compared to the other studied OMZ’s because the oxygen gradient at
the bottom of the Oman OMZ is relatively gradual, or because physical transport
processes (e.g., mass wastage or hydrodynamic winnowing) prevent seafloor accumu-
lation of organic matter sinking from the OMZ. Sediments were in fact coarser and
lower in organic matter near the OMZ boundary (1000-1250 m) than at shallower
depths on the Oman slope (Table 2; Smallwood et al., 1999), suggesting that winnow-
ing could prevent accumulation of labile organic matter exported from the core of the
OMZ (Meadows et al., 2000). Whatever the cause, our data indicate that the lower
boundaries of OMZ’s are not invariably regions of enhanced bioturbation.

While 2'°Pb mixed-layer depth did not decrease into the OMZ on the Oman slope,
the lack of change along the transect could result from the confounding effects of
water-column depth on bioturbation. Our relatively oxygenated stations (1250 and
3400 m) were also our deepest, and the decreases in carbon flux, infaunal biomass and
body size associated with changes in water depth are very likely to reduce the
thickness of the sediment mixed layer (Smith, 1992; Rabouille and Smith, submitted).
The mean 2'°Pb mixed-layer depth (4.6 + 0.2 cm) for the pooled Arabian-Sea OMZ
stations (400-1000 m) was half that for oxygenated slopes at similar depths in the
Atlantic and Pacific (Table 5), suggesting that bottom-water oxygen concentrations
between ~ 0.10 and ~ 0.3ml1 ! reduced the depth of 2'°Pb mixing on the Oman
slope. Kim and Burnett (1988) found similarly thin 2'°Pb mixed layers at bathyal
depths within the OMZ on the Peru margin, although their lack of oxygen data makes
a direct comparison to our study difficult. In addition, the mixed-layer depth within
the Oman OMZ was only half the global mean for bioturbated sediments (9.8 cm)
reported by Boudreau (1994). Thus, we conclude that the mixed layer is substantially
reduced in the Arabian Sea OMZ. This reduction in mixed-layer depth seems likely to
result directly from the stress of low bottom-water oxygen on bioturbating benthos
(see review by Diaz and Rosenberg, 1995), although secondary effects of the OMZ on
bioturbation cannot be ruled out. For example, OMZs appear to reduce water-
column consumption or degradation of sinking organic matter (Karl and Knauer,
1994; Wishner et al., 1990,1995). The resulting enhanced flux of labile particulate
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organic carbon to OMZ sediments is likely to increase sediment oxygen demand,
causing a shoaling of oxygen penetration and bioturbation activity in OMZs com-
pared to oxygenated slopes.

In contrast, the mean D,’s within the surface mixed layer did not differ between the
Arabian OMZ and the oxygenated Atlantic and Pacific slopes (Table 5). Thus, the
intensity of mixing per unit volume of mixed layer was similar in low-oxygen and
oxygenated bathyal settings, but the mixing was restricted to only half the sediment
thickness within the OMZ (Table 5). Thus, twice as much bioturbation energy
appeared to be expended over the entire sediment column within the oxygenated-
slope communities as in the Oman-slope OMZ. Because bioturbation activity can
stimulate microbial metabolism and enhance the mineralization of organic matter
through redox oscillation (e.g., Aller, 1994), reduced bioturbation could promote
greater burial efficiency of organic carbon in OMZ sediments. However, whether
organic carbon is more efficiently buried in OMZ sediments remains controversial
(Calvert and Pederson, 1992; Pederson et al., 1992; Aller, 1994).

Our second hypothesis, derived largely from oxygen-biofacies models (e.g., Savrda
and Bottjer, 1991), was that burrow diameter, diversity and penetration depth would
be positively correlated with bottom-water oxygen concentration from the boundary
to the core of the Oman-margin OMZ (i.e., within the 400-1250 m stations where
bottom-water oxygen was < 0.5mll™'). Both modal burrow diameter (ie., the
diameter of the most common burrow type) and the diversity of burrow types per
station were strongly correlated with bottom-water oxygen levels, suggesting that
they are good indicators of oxygen concentration. It should be noted that these
correlations were largely driven by differences between the boundary station (1250 m)
and stations closer to the core of the OMZ (i.e., 400-1000 m; Fig. 6). In contrast,
burrow penetration and maximum burrow diameter showed no such relationship.
Based on the sharp reduction in burrow diversity between our 1250 and 1000 m
stations, and the occurrence of faint laminations (i.e., incomplete bioturbation) at our
400-m station, our 400 to 1000-m OMZ stations span the dysaerobic zone of Savrda
and Bottjer (1991), and the bottom-water oxygen concentrations within this zone
(~0.1- ~0.3mll ') are similar to those reported by Savrda and Bottjer for modern
dysaerobic assemblages. Thus, our results provide support for certain components of
the current oxygen-related biofacies model (Savrda and Bottjer, 1991), in particular
that modal burrow size and diversity decline under oxygen concentrations thought to
produce “dysaerobic” conditions. Our data also suggest that burrow diversity might
be used to predict macrofaunal species diversity in dysaerobic assemblages. In
contrast to current biofacies models, burrow penetration depth and maximum burrow
diameter do not appear useful for predicting seafloor oxygen concentrations in
dysaerobic settings.

Our findings, combined with those of Levin et al. (2000), also shed light on shifts in
trace fossil types as bottom-water oxygen declines. From the boundary to the core
of the Oman-margin OMZ, we see a trend of decreasing modal burrow diameter
and diversity, as well as a shift from subsurface deposit feeders to surface feeding
functional groups. Both trends suggest that trace fossils formed by these assemblages
would exhibit decreasing occurrence of fodinichnia (subsurface- feeding traces), and
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increasing dominance of pascichnia (surficial-sediment-grazing traces) as bottom-
water oxygen concentrations decline. Thus, our results support the trace-fossil model
of Wheatcroft (1989) and closely parallel results from organically enriched shallow-
water assemblages, in which small, surface-deposit-feeding tube-dwellers frequently
dominate organic-rich (and oxygen poor) sediments (e.g., Pearson and Rosenberg,
1978; Rhoads et al., 1978; Weston, 1990).

In our third hypothesis, we postulated that changes in bioturbation within the
OMZ would be correlated with a shoaling in the depth distribution of macrofauna,
decreases in macrofaunal abundance and biomass, and a shift to surface-oriented
life-styles near the core of the OMZ. Only the latter part of this hypothesis is
supported because the factors causing any shoaling of the ?!°Pb mixed-layer in the
Arabian-Sea OMZ appear to be related to faunal lifestyles, rather than to patterns
(e.g., decreases) of faunal abundance and biomass. Macrofaunal abundance and
biomass (both total and that below 5 cm) at Oman-slope OMZ stations were high
compared to deeper, well-oxygenated sites along the transect, and compared to
oxygenated slopes in other regions (see Levin et al., 2000, for more discussion); higher
macrofaunal standing stock, especially below 5 cm, might be expected to enhance,
rather than reduce, OMZ mixed-layer depths. However, the Oman-margin OMZ
stations, in consonance with other low-oxygen slopes, exhibit an unusual predomi-
nance of tube-dwellers and surface-deposit feeders when compared to oxygenated
slopes (Levin et al., 2000). The concentration of deposit-feeding activity near the
sediment-water interface, combined with reduced mobility in tube dwellers, can very
reasonably explain a shallow mixed layer within the Oman-slope OMZ. In a study of
an organic enrichment gradient on the California shelf, Wheatcroft and Martin (1996)
found similarly very weak or inverse relationships between bioturbation and macro-
faunal standing stock and depth distributions. These results highlight the need for
natural-history information and mechanistic studies, as opposed to simple tabulations
of abundance and biomass, for predicting the effects of organisms on bioturbation and
other sediment geochemical processes. Thus, as in many terrestrial soil ecosystems
(e.g., Groffman and Bohlen, 1999), knowledge of the functional diversity of infauna
appears to be essential to predicting the nature of bioturbation and its impacts on
microbial metabolism and sediment geochemistry.
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